58 research outputs found

    Mouse nuclear myosin I knock-out shows interchangeability and redundancy of myosin isoforms in the cell nucleus.

    Get PDF
    Nuclear myosin I (NM1) is a nuclear isoform of the well-known "cytoplasmic" Myosin 1c protein (Myo1c). Located on the 11(th) chromosome in mice, NM1 results from an alternative start of transcription of the Myo1c gene adding an extra 16 amino acids at the N-terminus. Previous studies revealed its roles in RNA Polymerase I and RNA Polymerase II transcription, chromatin remodeling, and chromosomal movements. Its nuclear localization signal is localized in the middle of the molecule and therefore directs both Myosin 1c isoforms to the nucleus. In order to trace specific functions of the NM1 isoform, we generated mice lacking the NM1 start codon without affecting the cytoplasmic Myo1c protein. Mutant mice were analyzed in a comprehensive phenotypic screen in cooperation with the German Mouse Clinic. Strikingly, no obvious phenotype related to previously described functions has been observed. However, we found minor changes in bone mineral density and the number and size of red blood cells in knock-out mice, which are most probably not related to previously described functions of NM1 in the nucleus. In Myo1c/NM1 depleted U2OS cells, the level of Pol I transcription was restored by overexpression of shRNA-resistant mouse Myo1c. Moreover, we found Myo1c interacting with Pol II. The ratio between Myo1c and NM1 proteins were similar in the nucleus and deletion of NM1 did not cause any compensatory overexpression of Myo1c protein. We observed that Myo1c can replace NM1 in its nuclear functions. Amount of both proteins is nearly equal and NM1 knock-out does not cause any compensatory overexpression of Myo1c. We therefore suggest that both isoforms can substitute each other in nuclear processes

    Mechanisms controlling anaemia in Trypanosoma congolense infected mice.

    Get PDF
    Trypanosoma congolense are extracellular protozoan parasites of the blood stream of artiodactyls and are one of the main constraints on cattle production in Africa. In cattle, anaemia is the key feature of disease and persists after parasitaemia has declined to low or undetectable levels, but treatment to clear the parasites usually resolves the anaemia. The progress of anaemia after Trypanosoma congolense infection was followed in three mouse strains. Anaemia developed rapidly in all three strains until the peak of the first wave of parasitaemia. This was followed by a second phase, characterized by slower progress to severe anaemia in C57BL/6, by slow recovery in surviving A/J and a rapid recovery in BALB/c. There was no association between parasitaemia and severity of anaemia. Furthermore, functional T lymphocytes are not required for the induction of anaemia, since suppression of T cell activity with Cyclosporin A had neither an effect on the course of infection nor on anaemia. Expression of genes involved in erythropoiesis and iron metabolism was followed in spleen, liver and kidney tissues in the three strains of mice using microarrays. There was no evidence for a response to erythropoietin, consistent with anaemia of chronic disease, which is erythropoietin insensitive. However, the expression of transcription factors and genes involved in erythropoiesis and haemolysis did correlate with the expression of the inflammatory cytokines Il6 and Ifng. The innate immune response appears to be the major contributor to the inflammation associated with anaemia since suppression of T cells with CsA had no observable effect. Several transcription factors regulating haematopoiesis, Tal1, Gata1, Zfpm1 and Klf1 were expressed at consistently lower levels in C57BL/6 mice suggesting that these mice have a lower haematopoietic capacity and therefore less ability to recover from haemolysis induced anaemia after infection

    A complementary method for detecting qi vacuity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Qi vacuity (QV) is defined by traditional Chinese medicine as a loss of energy in the human body. An objective method for detecting QV was not available until recently, however. The automatic reflective diagnosis system (ARDK) is a device that detects human bioenergy through measuring skin conductance at 24 special acupoints on the wrists and ankles.</p> <p>Methods</p> <p>This study used the ARDK to measure skin conductance on 193 patients with QV and 89 sex- and age-matched healthy controls to investigate whether the device is useful in detecting QV. Patients diagnosed with QV have three or more of five symptoms or signs; symptom severity is measured on 5 levels and scored from 0 to 4 points. We compared the difference in the mean ARDK values between patients with QV and healthy controls, and further used linear regression analysis to investigate the correlation between the mean ARDK values and QV scores in patients diagnosed with QV.</p> <p>Results</p> <p>The mean ARDK values in patients with QV (30.2 ± 16.8 μA) are significantly lower than those of healthy controls (37.7 ± 10.8 μA; <it>P </it>< 0.001). A negative correlation was found between the mean ARDK values and QV scores (<it>r </it>coefficient = -0.61; <it>P </it>< 0.001). After adjusting for age, the decreased mean ARDK values in patients with QV showed a significant correlation with the QV scores.</p> <p>Conclusion</p> <p>These results suggest that the mean ARDK values reflect the severity of QV in patients diagnosed with the disorder. They also suggest that the bioenergy level of the human body can be measured by skin conductance. ARDK is a safe and effective complementary method for detecting and diagnosing QV.</p

    A Comprehensive Genetic Analysis of Candidate Genes Regulating Response to Trypanosoma congolense Infection in Mice

    Get PDF
    About one-third of cattle in sub-Saharan Africa are at risk of contracting “Nagana”—a disease caused by Trypanosoma parasites similar to those that cause human “Sleeping Sickness.” Laboratory mice can also be infected by trypanosomes, and different mouse breeds show varying levels of susceptibility to infection, similar to what is seen between different breeds of cattle. Survival time after infection is controlled by the underlying genetics of the mouse breed, and previous studies have localised three genomic regions that regulate this trait. These three “Quantitative Trait Loci” (QTL), which have been called Tir1, Tir2 and Tir3 (for Trypanosoma Infection Response 1–3) are well defined, but nevertheless still contain over one thousand genes, any number of which may be influencing survival. This study has aimed to identify the specific differences associated with genes that are controlling mouse survival after T. congolense infection. We have applied a series of analyses to existing datasets, and combined them with novel sequencing, and other genetic data to create short lists of genes that share polymorphisms across susceptible mouse breeds, including two promising “candidate genes”: Pram1 at Tir1 and Cd244 at Tir3. These genes can now be tested to confirm their effect on response to trypanosome infection

    Genetics of Host Response to Leishmania tropica in Mice – Different Control of Skin Pathology, Chemokine Reaction, and Invasion into Spleen and Liver

    Get PDF
    Several hundred million people are exposed to the risk of leishmaniasis, a disease caused by intracellular protozoan parasites of several Leishmania species and transmitted by phlebotomine sand flies. In humans, L. tropica causes cutaneous form of leishmaniasis with painful and long-persisting lesions in the site of the insect bite, but the parasites can also penetrate to internal organs. The relationship between the host genes and development of the disease was demonstrated for numerous infectious diseases. However, the search for susceptibility genes in the human population could be a difficult task. In such cases, animal models may help to discover the role of different genes in interactions between the parasite and the host. Unfortunately, the literature contains only a few publications about the use of animals for L. tropica studies. Here, we report an animal model suitable for genetic, pathological and drug studies in L. tropica infection. We show how the host genotype influences different disease symptoms: skin lesions, parasite dissemination to the lymph nodes, spleen and liver, and increase of levels of chemokines CCL2, CCL3 and CCL5 in serum

    Large-Scale Phenotyping of an Accurate Genetic Mouse Model of JNCL Identifies Novel Early Pathology Outside the Central Nervous System

    Get PDF
    Cln3Δex7/8 mice harbor the most common genetic defect causing juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive disease involving seizures, visual, motor and cognitive decline, and premature death. Here, to more thoroughly investigate the manifestations of the common JNCL mutation, we performed a broad phenotyping study of Cln3Δex7/8 mice. Homozygous Cln3Δex7/8 mice, congenic on a C57BL/6N background, displayed subtle deficits in sensory and motor tasks at 10–14 weeks of age. Homozygous Cln3Δex7/8 mice also displayed electroretinographic changes reflecting cone function deficits past 5 months of age and a progressive decline of retinal post-receptoral function. Metabolic analysis revealed increases in rectal body temperature and minimum oxygen consumption in 12–13 week old homozygous Cln3Δex7/8mice, which were also seen to a lesser extent in heterozygous Cln3Δex7/8 mice. Heart weight was slightly increased at 20 weeks of age, but no significant differences were observed in cardiac function in young adults. In a comprehensive blood analysis at 15–16 weeks of age, serum ferritin concentrations, mean corpuscular volume of red blood cells (MCV), and reticulocyte counts were reproducibly increased in homozygous Cln3Δex7/8 mice, and male homozygotes had a relative T-cell deficiency, suggesting alterations in hematopoiesis. Finally, consistent with findings in JNCL patients, vacuolated peripheral blood lymphocytes were observed in homozygous Cln3Δex7/8 neonates, and to a greater extent in older animals. Early onset, severe vacuolation in clear cells of the epididymis of male homozygous Cln3Δex7/8 mice was also observed. These data highlight additional organ systems in which to study CLN3 function, and early phenotypes have been established in homozygous Cln3Δex7/8 mice that merit further study for JNCL biomarker development

    Nat Genet

    Get PDF
    The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms. We developed new statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no previous functional annotation. We captured data from over 27,000 mice, finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. New phenotypes were uncovered for many genes with previously unknown function, providing a powerful basis for hypothesis generation and further investigation in diverse systems.Comment in : Genetic differential calculus. [Nat Genet. 2015] Comment in : Scaling up phenotyping studies. [Nat Biotechnol. 2015

    Vorstellungsrunde und Vortrag mit Befragung : Univ.-Prof. Mag. Dr. Dr. Oliver Rathkolb

    No full text
    070292 VU Ringvorlesung mit Übung - Abbau von exzessivem Nationalismus und Vorurteilen in unserer Gesellschaft (2018W) Der Vortrag fand in diesem Rahmen am 04.10.2018 statt

    Vorstellungsrunde und Vortrag mit Befragung : Univ.-Prof. Mag. Dr. Nikolaus Forgó

    No full text
    070292 VU Ringvorlesung mit Übung - Abbau von exzessivem Nationalismus und Vorurteilen in unserer Gesellschaft (2018W) Der Vortrag fand in diesem Rahmen am 06.12.2018 statt

    Discovery and functional characterization of new genes by large scale ENU mutagenesis in mice.

    No full text
    The most important tool to obtain insight into the function of genes is the use of mutant model organisms. Homologous recombination in embryonic stem cells allows the systematic production of mouse mutants for any gene that has been cloned. Gene trap strategies have been designed to interrupt even unknown genes which are tagged by the inserted vector and can be characterized structurally and functionally. Complementary to such &#39;gene-driven&#39; approaches, &#39;phenotype-driven&#39; approaches are necessary to identify new genes or gene products through a search for mutants with specific defects, e.g. in immune function and resistance to infectious diseases. Mutagenesis using the alkylating agent N-ethyl-N-nitrosourea (ENU) is a powerful approach for the production of mouse mutants (mainly point mutations). ENU mutagenizes - among other cells - premeiotic spermatogonia of F0 males which can be bred to produce a large number of G1 offspring or G3 pedigrees, respectively. It has been demonstrated for certain loci that the frequency of mutant recovery is about 1/1000 (recessive mutation) or 1/5000 (dominant mutation) for a specific locus that can be scored phenotypically, although strain as well as dosage and treatment regime do influence the mutagenesis rate. The mutants produced will be mainly hypomorphic, although gain-of-function and complete loss-of-function mutants can also be expected. These mutants are important tools for the identification of candidate genes for animal health, offering new strategies for the prevention, diagnosis, and therapy of diseases
    corecore