972 research outputs found

    Double Degeneracy and Jahn-Teller Effects in CMR Perovskites

    Full text link
    Jahn-Teller (JT) electron-phonon coupling effects in the colossal magnetoresistance perovskite compounds La1xAxMnO3La_{1-x}A_xMnO_3 are investigated. Electron-electron correlations between two degenerate Mn ege_g orbitals are studied in the Gutzwiller approximation. The static JT distortion and antiadiabatic polaron effects are studied in a modified Lang-Firsov approximation. We find that (i) the electron or hole character of the charge carrier depends on the static JT distortion, and (ii) due to the two-component nature of the JT coupling, fluctuations in the JT distortion direction contribute to the charge transport in similar fashion as the local spins.Comment: 11 RevTeX pages. 3 Figures available upon request. submitted to Phys. rev. B (Rapid Communications

    Crystal-field splitting for low symmetry systems in ab initio calculations

    Full text link
    In the framework of the LDA+U approximation we propose the direct way of calculation of crystal-field excitation energy and apply it to La and Y titanates. The method developed can be useful for comparison with the results of spectroscopic measurements because it takes into account fast relaxations of electronic system. For titanates these relaxation processes reduce the value of crystal-field splitting by 30\sim30% as compared with the difference of LDA one electron energies. However, the crystal-field excitation energy in these systems is still large enough to make an orbital liquid formation rather unlikely and experimentally observed isotropic magnetism remains unexplained.Comment: 13 pages, 5 figures, 3 table

    Grain size measurement using magnetic and acoustic Barkhausen noise

    Get PDF
    Results on annealed nickel show that the total number of counts of both magnetic and acoustic Barkhausen signals vary inversely with grain size. In decarburized steels the total number of counts and the amplitude of both Barkhausen signals increase in proportion to grain size. The paper addresses these results in context of grain size, grain‐boundary segregation, and precipitate effect

    Impact of Charge Ordering on Magnetic Correlations in Perovskite (Bi,Ca)MnO_3

    Full text link
    Single crystalline (Bi,Ca)MnO3 (74< %Ca <82) were studied with neutron scattering, electron diffraction and bulk magnetic measurement. We discovered dynamic ferromagnetic spin correlations at high temperatures, which are replaced by antiferromagnetic spin fluctuations at a concomitant charge ordering and structural transition. Our results indicate that thermal-activated hopping of the Jahn-Teller active e_g electrons in these insulating materials, nevertheless, induce ferromagnetic interaction through double-exchange mechanism. It is the ordering of these charges competing with the double-exchange ferromagnetic metallic state.Comment: 11 pages, 3 figures, Revte

    Oxygen Moment Formation and Canting in Li2CuO2

    Full text link
    The possibilities of oxygen moment formation and canting in the quasi-1D cuprate Li2CuO2 are investigated using single crystal neutron diffraction at 2 K. The observed magnetic intensities could not be explained without the inclusion of a large ordered oxygen moment of 0.11(1) Bohr magnetons. Least-squares refinement of the magnetic structure of Li2CuO2 in combination with a spin-density Patterson analysis shows that the magnetization densities of the Cu and O atoms are highly aspherical, forming quasi-1D ribbons of localised Cu and O moments. Magnetic structure refinements and low-field magnetization measurements both suggest that the magnetic structure of Li2CuO2 at 2 K may be canted. A possible model for the canted configuration is proposed.Comment: 10 pages, 8 figures (screen resolution

    Antiferromagnet-ferromagnet phase transition in lightly doped manganites

    Get PDF
    Magnetic and structural phase diagrams of the La₀.₈₈MnOx, La₁₋xSrx(Mn₁₋x/₂Nbx/₂)O₃, Nd₁₋xCaxMnO₃, and Bi₁₋xCaxMnO₃ series constructed on the basis of x-ray, neutron powder diffraction, Young’s modulus, magnetization and resistivity measurements are presented. It is shown that the main factor controlling the antiferromagnet–ferromagnet phase transition in the manganites is a type of an orbital state. The results are discussed in the framework of structurally driven magnetic phase separation model

    How chemistry controls electron localization in 3d1 perovskites: A Wannier-function study

    Full text link
    In the series of 3d1 t2g perovskites, SrVO3--CaVO3--LaTiO3--YTiO3 the transition-metal d electron becomes increasingly localized and undergoes a Mott transition between CaVO3 and LaTiO3. By defining a low-energy Hubbard Hamiltonian in the basis of Wannier functions for the t2g LDA band and solving it in the single-site DMFT approximation, it was recently shown[1] that simultaneously with the Mott transition there occurs a strong suppression of orbital fluctuations due to splitting of the t2g levels. The present paper reviews and expands this work, in particular in the direction of exposing the underlying chemical mechanisms by means of ab initio LDA Wannier functions generated with the NMTO method. The Wannier functions for the t2g band exhibit covalency between the transition-metal t2g, the large cation-d, and the oxygen-p states; this covalency, which increases along the series, turns out to be responsible not only for the splittings of the t2g levels, but also for non-cubic perturbations of the hopping integrals, both of which are decisive for the Mott transition. We find good agreement with the optical and photoemission spectra, with the crystal-field splittings and orbital polarizations recently measured for the titanates, and with the metallization volume for LaTiO3. The metallization volume for YTiO3 is predicted. Using super-exchange theory, we reproduce the observed magnetic orders in LaTiO3 and YTiO3, but the results are sensitive to detail, in particular for YTiO3 which, without the Jahn-Teller distortion, would be AFM C- or A-type, rather than FM. Finally, we show that it possible to unfold the orthorhombic t2g LDA bandstructure to a pseudocubic zone. In this zone, the lowest band is separated from the two others by a direct gap and has a width, W_I, which is significantly smaller than that, W, of the entire t2g band. The progressive GdFeO3-type distortion favours electron localization by decreasing W, by increasing the splitting of the t2g levels and by decreasing W_I. Our conclusions concerning the roles of GdFeO3-type and JT distortions agree with those of Mochizuki and Imada [2].Comment: Published version, final. For high resolution figures see http://www.fkf.mpg.de/andersen/docs/pub/abstract2004+/pavarini_02.pd

    Non-linear electrical response in a non-charge-ordered manganite: Pr0.8Ca0.2MnO3

    Full text link
    Up to now, electric field induced non-linear conduction in the Pr(1-x)CaxMnO3 system has been ascribed to a current-induced destabilization of the charge ordered phase. However, for x<0.25, a ferromagnetic insulator state is observed and charge-ordering is absent whatever the temperature. A systematic investigation of the non-linear transport in the ferromagnetic insulator Pr0.8Ca0.2MnO3 shows rather similar results to those obtained in charge ordered systems. However, the experimental features observed in Pr0.8Ca0.2MnO3 are distinct in that the collapse of the CO energy gap can not be invoked as usually done in the other members of the PCMO system. We propose interpretations in which the effectiveness of the DE is restored upon application of electric field.Comment: 6 pages, 5 figure

    Temperature and field dependence of the phase separation, structure, and magnetic ordering in La1x_{1-x}Cax_xMnO3_3, (x=0.47x=0.47, 0.50, and 0.53)

    Full text link
    Neutron powder diffraction measurements, combined with magnetization and resistivity data, have been carried out in the doped perovskite La1x_{1-x}Cax_xMnO3_3 (x=0.47x=0.47, 0.50, and 0.53) to elucidate the structural, magnetic, and electronic properties of the system around the composition corresponding to an equal number of Mn3+ and Mn4+. At room temperature all three samples are paramagnetic and single phase, with crystallographic symmetry Pnma. The samples then all become ferromagnetic (FM) at TC265T_C\approx 265 K. At 230\sim 230 K, however, a second distinct crystallographic phase (denoted A-II) begins to form. Initially the intrinsic widths of the peaks are quite large, but they narrow as the temperature decreases and the phase fraction increases, indicating microscopic coexistence. The fraction of the sample that exhibits the A-II phase increases with decreasing temperature and also increases with increasing Ca doping, but the transition never goes to completion to the lowest temperatures measured (5 K) and the two phases therefore coexist in this temperature-composition regime. Phase A-II orders antiferromagnetically (AFM) below a N\'{e}el temperature TN160T_N \approx 160 K, with the CE-type magnetic structure. Resistivity measurements show that this phase is a conductor, while the CE phase is insulating. Application of magnetic fields up to 9 T progressively inhibits the formation of the A-II phase, but this suppression is path dependent, being much stronger for example if the sample is field-cooled compared to zero-field cooling and then applying the field. The H-T phase diagram obtained from the diffraction measurements is in good agreement with the results of magnetization and resistivity.Comment: 12 pages, 3 tables, 11 figure

    CrO2: a self-doped double exchange ferromagnet

    Full text link
    Band structure calculations of CrO2 carried out in the LSDA+U approach reveal a clear picture of the physics behind the metallic ferromagnetic properties. Arguments are presented that the metallic ferromagnetic oxide CrO2 belongs to a class of materials in which magnetic ordering exists due to double exchange (in this respect CrO2 turns out to be similar to the CMR manganates). It is concluded that CrO2 has small or even negative charge transfer gap which can result in self-doping. Certain experiments to check the proposed picture are suggested.Comment: 4 pages, 4 Figure
    corecore