39 research outputs found

    Stem cell therapy for neurological disorders

    Get PDF
    Neurological disease encompasses a diverse group of disorders of the central and peripheral nervous systems, which collectively are the leading cause of disease burden globally. The scope of treatment options for neurological disease is limited, and drug approval rates for improved treatments remain poor when compared with other therapeutic areas. Stem cell therapy provides hope for many patients, but should be tempered with the realisation that the scientific and medical communities are still to fully unravel the complexities of stem cell biology, and to provide satisfactory data that support the rational, evidence-based application of these cells from a therapeutic perspective. We provide an overview of the application of stem cells in neurological disease, starting with basic principles, and extending these to describe the clinical trial landscape and progress made over the last decade. Many forms of stem cell therapy exist, including the use of neural, haematopoietic and mesenchymal stem cells. Cell therapies derived from differentiated embryonic stem cells and induced pluripotent stem cells are also starting to feature prominently. Over 200 clinical studies applying various stem cell approaches to treat neurological disease have been registered to date (Clinicaltrials.gov), the majority of which are for multiple sclerosis, stroke and spinal cord injuries. In total, we identified 17 neurological indications in clinical stage development. Few studies have progressed into large, pivotal investigations with randomised clinical trial designs. Results from such studies will be essential for approval and application as mainstream treatments in the future

    Stem cell therapy for neurological disorders

    Get PDF
    Neurological disease encompasses a diverse group of disorders of the central and peripheral nervous systems, which collectively are the leading cause of disease burden globally. The scope of treatment options for neurological disease is limited, and drug approval rates for improved treatments remain poor when compared with other therapeutic areas. Stem cell therapy provides hope for many patients, but should be tempered with the realisation that the scientific and medical communities are still to fully unravel the complexities of stem cell biology, and to provide satisfactory data that support the rational, evidence-based application of these cells from a therapeutic perspective. We provide an overview of the application of stem cells in neurological disease, starting with basic principles, and extending these to describe the clinical trial landscape and progress made over the last decade. Many forms of stem cell therapy exist, including the use of neural, haematopoietic and mesenchymal stem cells. Cell therapies derived from differentiated embryonic stem cells and induced pluripotent stem cells are also starting to feature prominently. Over 200 clinical studies applying various stem cell approaches to treat neurological disease have been registered to date (Clinicaltrials.gov), the majority of which are for multiple sclerosis, stroke and spinal cord injuries. In total, we identified 17 neurological indications in clinical stage development. Few studies have progressed into large, pivotal investigations with randomised clinical trial designs. Results from such studies will be essential for approval and application as mainstream treatments in the future.Work in MSP’s group is funded by the South African Medical Research Council (University Flagship and Extramural Unit awards).http://www.samj.org.zaam2020Immunolog

    MHC-class-II are expressed in a subpopulation of human neural stem cells in vitro in an IFN gamma-independent fashion and during development

    Get PDF
    This work was supported by grants from Great Ormond Street Hospital Children’s Charity, Newlife Foundation, the Antony Nolan Trust, a studentship to CAG from Consejo Nacional de Ciencia y Tecnologia (CONACyT) and Instituto Jaliscience de la Juventud (IJJ), Mexico and GOSH NIHR Biomedical Research Centre. The human embryonic and fetal material was provided by the Human Developmental Biology Resource (http://hdbr.org) jointly funded by the Medical Research Council (grant G070089) and The Wellcome Trust (grant GR082557)

    Effects of histocompatibility and host immune responses on the tumorigenicity of pluripotent stem cells

    Get PDF
    Pluripotent stem cells hold great promises for regenerative medicine. They might become useful as a universal source for a battery of new cell replacement therapies. Among the major concerns for the clinical application of stem cell-derived grafts are the risks of immune rejection and tumor formation. Pluripotency and tumorigenicity are closely linked features of pluripotent stem cells. However, the capacity to form teratomas or other tumors is not sufficiently described by inherited features of a stem cell line or a stem cell-derived graft. The tumorigenicity always depends on the inability of the recipient to reject the tumorigenic cells. This review summarizes recent data on the tumorigenicity of pluripotent stem cells in immunodeficient, syngeneic, allogeneic, and xenogeneic hosts. The effects of immunosuppressive treatment and cell differentiation are discussed. Different immune effector mechanisms appear to be involved in the rejection of undifferentiated and differentiated cell populations. Elements of the innate immune system, such as natural killer cells and the complement system, which are active also in syngeneic recipients, appear to preferentially reject undifferentiated cells. This effect could reduce the risk of tumor formation in immunocompetent recipients. Cell differentiation apparently increases susceptibility to rejection by the adaptive immune system in allogeneic hosts. The current data suggest that the immune system of the recipient has a major impact on the outcome of pluripotent stem cell transplantation, whether it is rejection, engraftment, or tumor development. This has to be considered when the results of experimental transplantation models are interpreted and even more when translation into clinics is planned

    Fingerprinting of neurotoxic compounds using a mouse embryonic stem cell dual luminescence reporter assay

    Get PDF

    transcriptome analysis of adipose - derived stem cells in a gelatin sponge

    No full text
    these .cel files correspond to transcriptomes of adipose-derived stem cells in culture (Day 0 = D0) compared to thze same cells 8 days in standard 2D culture (2D) or in a gelatin sponge (sponge). biological triplicates were performed (1/2/3)THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV
    corecore