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ABSTRACT

Dendritic cells (DCs) are crucial for the induction and
maintenance of tumor-specific immune responses.
Studies have shown that tumor-associated DCs are
immunosuppressed in some human tumors. However,
phenotype and function of DCs in retinoblastoma (RB)
remain unclear. RB cell supernatant (RBcs) was used to
treat DCs in vitro to explore the effect of RB cells on
DCs. DCs were generated from peripheral blood mono-
nuclear cells of healthy donors. On day 5 of culture, DCs
were treated with RBcs for 24 h, and then purified using
magnetic beads. The maturation of DCs was induced by
TNF-α or LPS. After treatment with RBcs, expression of
co-stimulatory molecules CD80 and CD86 was elevated
in DCs, accompanied by increased production of IL-
12p70, TNF-α, IL-6, IL-1β, and IL-8 but decreased pro-
duction of IL-10. RBcs neither inhibited DC maturation
nor promoted DC apoptosis. Moreover, RBcs-exposed
DCs stimulated allogenetic T cell proliferation and T cell-
derived cytokine production. These results indicate that
RBcs can improve DCs’ antigen presenting function and
capability to activate T cells, suggesting that RB cells
may have an immunostimulatory effect on DCs, and DC-
based immunotherapy may be adopted in the treatment
of RB.

KEYWORDS retinoblastoma, dendritic cell, anti-tumor
immunity, immunotherapy

INTRODUCTION

Retinoblastoma (RB) is the most common primary intraoc-
ular malignant tumor in childhood, and the morbidity of RB is
about 11 per million children below age 5 worldwide (Hous-
ton et al., 2011). The prognosis of RB patients has been
dramatically improved by systematic enucleation (Khetan
et al., 2013), external cryotherapy, local thermotherapy
(Schueler et al., 2003), and brachytherapy (Merchant et al.,
2004). Although these methods are successful at controlling
the growth of the primary tumor, they cannot prevent the
development of metastasis, which remains universally fatal.
Moreover, there are some severe side effects related to
radiotherapy or chemotherapy. Cancer immunotherapies
have been generally in steady progress in this field over the
past decade, particularly in the treatment of metastatic skin
melanoma.

Dendritic cells (DCs) are crucial for the induction and
maintenance of antitumor immune responses. Tumor-spe-
cific antigens bound to molecules of the major histocom-
patibility complex (MHC) on the surface of DCs are
processed, then presented to and recognized by T cells. In
addition, DCs provide some critical molecules, such as co-
stimulatory signals and cytokines, to the T cells for their full
activation. Actually, tumor-infiltrating DCs (TIDCs) are
associated with prolonged survival and reduced incidence in
some metastatic human tumors (Dieu-Nosjean et al., 2008;Juan Ma and Huamin Han contributed equally to this work.
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Iwamoto et al., 2003; Ladanyi et al., 2007; Nakakubo et al.,
2003). However, in some other conditions, TIDCs are func-
tionally compromised. TIDCs are phenotypically and func-
tionally defective in colorectal cancer (Chaux et al., 1997)
and melanoma (Ataera et al., 2011; Stoitzner et al., 2008),
and a positive correlation of TIDCs with the poor prognosis
was found in colorectal cancer (Sandel et al., 2005) and
breast cancer (Treilleux et al., 2004). In hepatocellular car-
cinoma, circulating DCs also exhibit an immature phenotype
(Beckebaum et al., 2004).

Until now, the effect of RB on human DCs has not been
explored. In the present study, we used RB cell supernatant
(RBcs) to mimic the tumor milieu, and performed a detailed
study on the phenotype of DCs treated with RBcs. Subse-
quently, we investigated the effect of RBcs-exposed DCs on
allogenetic T cell proliferation and cytokine production. Our
study demonstrates that RBcs improves DCs’ antigen pre-
senting function and capability to activate T cells, and DC-
based immunotherapy may be adopted in the treatment of RB.

RESULTS

Induction of co-stimulatory molecules CD80 and CD86
in DCs by RBcs

Five-day old DCs were treated with or without RBcs for 24 h.
On day 6, maturation of DCs was induced by adding 20 ng/
mL TNF-α or 1 μg/mL LPS. After 24 h, all DCs appeared as
big loosely adherent clumps or isolated floating cells with the

typical dendritic morphology (Fig. 1). The expression of DC
markers (CD1a and CD83), MHC class molecules (HLA-ABC
and HLA-DR) and co-stimulatory molecules (CD40, CD80,
and CD86) was determined by flow cytometry (Fig. 2).
Compared with control DCs, RBcs-exposed DCs expressed
higher levels of CD80 and CD86, but similar levels of CD1a,
CD83, HLA-ABC, HLA-DR, and CD40. These data suggest
that RB cells may enhance DCs’ capacity in priming T cell
responses, whereas have no effect on the maturation of DCs.

Induction of IL-12p70, TNF-α, IL-6, IL-1β, IL-8
and inhibition of IL-10 in DCs by RBcs

In addition to co-stimulatory molecules, DC-derived cyto-
kines also play an important role in priming T cell response.
Cytokine production in DCs was assayed using CBA Human
Inflammation Kit. Compared with control DCs, RBcs-
exposed DCs secreted more IL-12p70, TNF-α, IL-6, IL-1β,
and IL-8, but less IL-10, a potent immunosuppressive cyto-
kine (Fig. 3). Moreover, alterations in cytokine production
induced by RBcs in LPS-matured DCs were more significant
than those in TNF-α-matured DCs (Fig. 3B). These results
further indicate that RB cells can increase DCs’ capacity to
activate T cells.

No effect of RBcs on DC apoptosis

As tumor cells can escape immune destruction by inducing
DC apoptosis (Kanto et al., 2001; Kiertscher et al., 2000; Ma

A B

Control DC

Y79 DC

CD detalumits SPLCD detalumits -FNT

Figure 1. The photomicrograph of DC cultures (200×). Control DCs or RBcs-exposed DCs were treated with 20 ng/mL TNF-α

(A) or 1 μg/mL LPS (B) for 24 h. Y79 DC: RBcs-exposed DCs.
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et al., 2010), we evaluated whether RB cells could affect DC
apoptosis (Fig. 4). FITC-Annexin-V and propidium iodide (PI)
were used to stain DCs, and the proportion of apoptotic cells
(Annexin+/PI-) was determined by flow cytometry. No signif-
icant difference in apoptotic proportion was observed
between control DCs and RBcs-exposed DCs. DC apoptosis
was further assessed by a FACS-based TUNEL assay uti-
lizing FITC-dUTP. It was found that the apoptotic rate of
RBcs-exposed DCs was similar to that of control DCs. These
data indicate that RB cells have no effect on DC apoptosis.

Stimulation of T cell proliferation by RBcs-exposed DCs

To verify the immunostimulatory effect of RBcs-exposed
DCs, DCs treated with or without RBcs were irradiated and
then used to stimulate purified allogeneic T cells (2 × 105 per
well). Proliferation of T cells was analyzed by measuring the
incorporation of [3H]-thymidine. As shown in Fig. 5, a sig-
nificant increase in T cell proliferation was observed when
they were co-cultured with RBcs-exposed DCs at T/DC ratio
of 500:1 and 100:1, indicating that DCs’ capacity to activate
T cells was enhanced after treatment with RBcs.

Induction of T cell-derived cytokines by RBcs-exposed
DCs

To further confirm the immunostimulatory effect of RBcs-
exposed DCs, levels of T cell-derived cytokines were mea-
sured in above T-DC co-culture system using the CBA
human Th1/Th2/Th17 cytokine kit. It was observed that

RBcs-exposed DCs stimulated T cells to secrete much more
cytokines than control DCs at different T/DC ratio, including
IFN-γ, IL-2, TNF-α, IL-6, IL-10, and IL-17 (Fig. 6). On the
contrary, no IL-4 production was found in T cells treated with
either control DCs or RBcs-exposed DCs. These data indi-
cate that RBcs-exposed DCs induce T cells to produce Th1
and Th17 cytokines predominantly.

DISCUSSION

DCs play a critical role in tumor immune surveillance by
initiating tumor-specific immune responses. Clinically, infil-
tration of DCs is correlated with a better prognosis in various
human tumors (Dieu-Nosjean et al., 2008; Iwamoto et al.,
2003; Ladanyi et al., 2007; Nakakubo et al., 2003), which is
attributed to inhibition of tumor growth and metastasis by
DCs (Lim et al., 2007; Movassagh et al., 2004; Preynat-
Seauve et al., 2007). However, the immune function of DCs
is sometimes suppressed due to some factors produced by
tumors, such as IL-10, transforming growth factor-β (TGF-β),
vascular endothelial growth factor (VEGF), IL-6, macro-
phage colony-stimulating factor (M-CSF), and prostaglandin
E2 (PGE2) (Preynat-Seauve et al., 2006; Zou, 2005). The
molecular mechanisms of DC dysfunction may be related to
activation of the signal transducers and activators of tran-
scription 3 (STAT3) and inhibition of nuclear factor kappa-B
(NF-κB) (Gottfried et al., 2008; Wang et al., 2004).

Until now, the role of DCs in RB has not been explored,
and the effect of RB on DCs remains unknown. In the

A TNF-  stimulated DC

B LPS stimulated DC

Y79 DC

Control DC

Y79 DC

Control DC

HLA-ABC HLA-DR 68DC08DC04DC38DCa1DC

Figure 2. Expression of DC markers, MHC and co-stimulatory molecules in RBcs-exposed DC. Control DCs or RBcs-exposed

DCs were treated with 20 ng/mL TNF-α (A) or 1 μg/mL LPS (B) for 24 h. The cells were then harvested for immunofluorescence

staining and flow cytometry. Bold lines denote fluorescence when stained with fluorochrome-conjugated antibody to the indicated

antigen, and fine lines denote fluorescence when stained with isotype control mAb. Data shown are a representative experiment of

five. Y79 DC: RBcs-exposed DCs.
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Figure 3. Production of cytokines IL-12, IL-10, TNF-α, IL-1β, IL-6, and IL-8 by RBcs-exposed DCs.Control DCs or RBcs-exposed

DCs (4×104cells/well)were treatedwith20ng/mLTNF-α (A)or1μg/mLLPS(B) for24h.Concentrationsof cytokines incell-freesupernatants

were analyzed by CBA Human Inflammation Kit that could identify all six kinds of cytokines in a single sample. Quantitative production of a

particular kind of cytokine is indicated by PE-labeled-specific Ab staining. The data are mean values ± SD of triplicate determinations. Data

shown are a representative experiment of three. *P < 0.05, vs. control DCs. **P < 0.01, vs. control DCs. Y79 DC: RBcs-exposed DCs.

RESEARCH ARTICLE Juan Ma et al.

310 © The Author(s) 2014. This article is published with open access at Springerlink.com and journal.hep.com.cn

P
ro
te
in

&
C
e
ll



present study, we first identified the alterations in the phe-
notype of DCs after treatment with RBcs. It was found that
RBcs did not inhibit the maturation of DCs, based on the
finding that RBcs had no effect on the expression of DC
markers CD1a and CD83. Our observation is inconsistent
with some other studies in which maturation of DCs is sup-
pressed by tumor cells or tumor condition media (Bharadwaj
et al., 2007; Gabrilovich et al., 1996; Ma et al., 2010; Mich-
ielsen et al., 2011; Sombroek et al., 2002), suggesting that
inhibition of DCs’ maturation may be tumor-specific.
Because some tumor cells can induce DC apoptosis to
escape immune surveillance (Kanto et al., 2001; Kiertscher
et al., 2000; Ma et al., 2010), we evaluated the effect of RBcs
on DC apoptosis. As shown in the present study, RBcs failed
to induce DC apoptosis. There is one report showing that
mature DCs can upregulate Bcl-X to resist Fas/CD95-med-
iated DC apoptosis (Lundqvist et al., 2002).

Our study revealed that RBcs upregulated co-stimulatory
molecules CD80 and CD86 in DCs. It has been well estab-
lished that these molecules are required for optimal T cell
activation via binding their receptors CD28 and CD152
(CTLA4) on T cells (Carreno and Collins, 2002; Collins et al.,
2005). Therefore, upregulation of CD80 and CD86 by RBcs
suggests that RB cells may enhance Tcell immune response
through DCs. Consistent with this finding, an increase in T
cell proliferation was observed when Tcells were co-cultured
with RBcs-exposed DCs in the present study. In addition,
these T cells were found to produce more cytokines than
control RBcs-untreated DCs. These results indicate that RB
cells improve DCs’ capacity to activate T cell, even though

phenotype and function of DCs in RB tumor microenviron-
ment still need to be further identified.

In addition to co-stimulatory molecules CD80 and CD86,
more cytokines were produced by RBcs-exposed DCs, such
as IL-12, an essential cytokine stimulating Th1 responses.
Consistent with IL-12 overproduction, RBcs-exposed DCs
induced T cells to secrete more IFN-γ. Interestingly, it was
found that CD80/86 was synergistic with IL-12 for inducing T
cell proliferation and IFN-γ production (Kubin et al., 1994).
Some cancer models have demonstrated the anti-tumor
activities of IL-12 (Colombo and Trinchieri, 2002). Endoge-
nous IL-12 is required for resistance to transplantable tumors
or chemically induced tumors, and recombinant IL-12 treat-
ment inhibits tumor establishment or induces tumor regres-
sion (Colombo and Trinchieri, 2002). The anti-tumor
mechanisms of IL-12 may also be related to other cytotoxic
lymphocytes, such as NK cells, whose maturation and acti-
vation arealso dependent on IL-12 (LozaandPerussia, 2001).

Contrary to upregulation of IL-12, IL-10 was downregu-
lated in RBcs-exposed DCs. As an immunosuppressor, IL-10
inhibits the expression of MHC class molecules and co-
stimulatory molecules, and prevents the production of Th1
cytokines IL-2 and IFN-γ by antigen-presenting cells (APCs).
Therefore, IL-10 favors tumor evasion from immune sur-
veillance via suppressing antigen presentation and T cell
activation (Lippitz, 2013). IL-10 is overexpressed in a series
of human cancers, which is associated with advanced stage
and bad prognosis (Lippitz, 2013). Our study shows that RB
cells may trigger immune responses by reducing IL-10 pro-
duction, in addition to increasing IL-12 secretion by DCs.
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Figure 4. Apoptosis of RBcs-exposed DCs. Control DCs or RBcs-exposed DCs were treated with 20 ng/mL TNF-α (A) or 1 μg/mL

LPS (B) for 24 h. DCs were stained with FITC-Annexin-V and propidium iodide (PI), and the proportion of apoptotic cells (Annexin+/

PI-) was determined by flow cytometry (a and b). Apoptosis was also assessed by a FACS-based TUNEL assay utilizing FITC-dUTP.

The proportion of apoptotic cells (dUTP+) was determined by flow cytometry (c and d). Data shown are one representative experiment

of three. Y79 DC: RBcs-exposed DCs.
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In summary, we for the first time reveal that RBcs can
enhance DCs’ capacity to activate T cells based on the fol-
lowing findings: First, RBcs upregulated the expression of
co-stimulatory molecules CD80 and CD86 in DCs. Second,
RBcs induced the production of IL-12p70, TNF-α, IL-6, IL-1β,
and IL-8, whereas reduced the secretion of IL-10 by DCs.
Third, RBcs-exposed DCs stimulated T cell proliferation.
Finally, RBcs-exposed DCs induced T cells to release Th1/
Th17 cytokines predominantly. These results suggest that
RB cells may have an immunostimulatory effect on DCs, and
immunotherapy aimed at DCs may be a potential way to
treat RB.

MATERIALS AND METHODS

RB cell line and DCs

RB cell line Y79 was obtained from ATCC (HTB-18; Rockville, MD),

and maintained in RPMI-1640 medium supplemented with 10 mmol/L

HEPES, 2 mmol/L L-glutamine, 100 U/mL penicillin, 100 μg/mL

streptomycin, and 10% heat-inactivated fetal calf serum (FCS, Sigma

Chemical Co., St. Louis, MO, USA). Peripheral blood mononuclear

cells (PBMCs) were isolated by Ficoll-Hypaque density gradient

centrifugation from healthy individuals. To generate DCs, the mono-

nuclear cell fraction was washed twice with RPMI-1640, suspended in

RPMI-1640 at 2.5 × 106 cells/mL, and seeded in a 6-well plate

(Becton) at 2 mL per well. The plate was incubated at 37°C for 2 h,

and the non-adherent cells were discarded. The adherent cells were

cultured for 6 days in 2.5 mL RPMI supplemented with 10 mmol/L

HEPES, 2 mmol/L L-glutamine, 100 U/mL penicillin, 100 μg/mL

streptomycin, 10% heat-inactivated FCS, 50 ng/mL rhGM-CSF, and

20 ng/mL rhIL-4 (R&D System, Minneapolis, MN). Half-volume

medium exchange was performed every 3 days with medium con-

taining fresh cytokines.

Treatment of DCs with RBcs

RBcs was prepared by seeding 10-cm dish (Falcon; BD Bioscience,

Franklin Lakes, NJ, USA) with 1 × 107 RB cell in 10 mL of completed

medium for 24 h and centrifuged to remove cell debris. On day 5 of

DC culture, RBcs was added to test DCs, while the same volume of

culture medium was added to control DCs. On day 6, maturation of

DCs was induced by adding 20 ng/mL of TNF-α (R&D System) or

1 μg/mL of LPS (Sigma), and the phenotype of DCs was determined

by flow cytometry after incubating with TNF-α or LPS for 24 h. In

some experiments, before adding of TNF-α or LPS, DCs were

purified on day 6. Briefly, RBcs-treated DCs or control DCs were

washed extensively and then purified with microbeads on auto-

MACS columns using a Blood Dendritic Cell Isolation kit (Miltenyi

Biotech, BergischGladbach, Germany) according to the manufac-

turer’s instructions. In short, isolation of DCs was performed in a two-

step procedure. First, cells labeled with the Non-DC Depletion

Cocktail comprising with CD14 and CD19 magnetic beads were

depleted. Then DCs were positively selected by labeled with DC

Enrichment Cocktail comprising with CD1c (BDCA-1), CD304

(BDCA-4/Neuropilin-1), and CD141 (BDCA-3) magnetic beads.

Purified DCs samples contained >95% CD1c+ DCs as evaluated by

the Blood Dendritic Cell Enumeration Kit (Miltenyi Biotech).

Flow cytometry and Reagents

The following monoclonal antibodies (mAb) conjugated with either

fluorescein isothiocyanate (FITC) or phycoerythrin (PE) were used:

CD1a, CD83, CD40, CD80, CD86, HLA-ABC, and HLA-DR (BD
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Figure 5. Enhanced allogenetic T cell proliferation stimulated by RBcs-exposed DCs. After treatment with TNF-α (A) or LPS

(B) for 24 h, varying numbers (400, 2000, or 10000) of irradiated (30 Gy) DCs were added to triplicate wells containing 2 × 105 purified

allogeneic T lymphocytes and incubated for 4 days. Cultures were pulsed during the final 8 h of incubation, and incorporation of [3H]-

thymidine was measured. The data are mean values ± SD of triplicate determinations. Data shown are a representative experiment of

three. *P < 0.05, vs control DCs. **P < 0.01, vs control DCs. Y79 DC: RBcs-exposed DCs.

RESEARCH ARTICLE Juan Ma et al.

312 © The Author(s) 2014. This article is published with open access at Springerlink.com and journal.hep.com.cn

P
ro
te
in

&
C
e
ll



A

T:DC

pg
/m

L

Y79 DC
Control DC

0

3000

6000

9000

12000

(500:1) (100:1) (20:1)
0

200

400

600

800

1000

(500:1) (100:1) (20:1)

**
P = 0.009

0

30

60

90

120

(500:1) (100:1) (20:1)

0

100

200

300

400

500

(500:1) (100:1) (20:1)
0

40

80

120

160

200

(500:1) (100:1) (20:1)

**
P = 0.001

0

30

60

90

120

(500:1) (100:1) (20:1)

P = 0.5931
**

**
P = 0.003

*
P = 0.016

**
P = 0.002

**
P = 0.001 *

P = 0.014

P = 0.051

**
P = 0.001 **

P = 0.001

**
P = 0.003

***
P = 0.000 ** 

P = 0.001

*
P = 0.023

*
P = 0.019

**
P = 0.001

P = 0.002

IL-6 IL-10 IL-17

TNF-αIFN-γ IL-2

Control DC

Y79 DC

TNF-α stimulated DC

TNF-α stimulated DC

IL-6

IL-10

IL-17

TNF-α

IFN-γ

IL-2

IL-4

T:DC
20:1500:1 100:1

104

103

102

101

100

104

103

102

101

100

104

103

102

101

100

104

103

102

101

100

104

103

102

101

100

104

103

102

101

100

H-2LFH-2LFH-2LF
100        101         102        103         104 100        101         102        103         104 100        101         102        103         104

Figure 6. Increased cytokine production of by allogenetic T cell stimulated with RBcs-exposed DCs. After treatment with TNF-

α (A) or LPS (B) for 24 h, varying numbers (400, 2000, or 10000) of irradiated (30 Gy) DCs were added to triplicate wells containing

2 × 105 purified allogeneic T lymphocytes and incubated for 3 days. The concentrations of cytokines producted in cell-free

supernatants were analyzed by CBA Human Th1/Th2/Th17 Cytokine Kit that could identify all seven kinds of cytokines in a single

sample. Quantitative production of a particular kind of cytokine is indicated by PE-labeled-specific Ab staining. The data are mean

values ± SD of triplicate determinations. Data shown are a representative experiment of three. *P < 0.05, vs. control DCs. **P < 0.01,

vs. control DCs. ***P < 0.001, vs. control DCs. Y79 DC: RBcs-exposed DCs.

The immunostimulatory effects of RB cell supernatant on DCs RESEARCH ARTICLE

© The Author(s) 2014. This article is published with open access at Springerlink.com and journal.hep.com.cn 313

P
ro
te
in

&
C
e
ll



Pharmingen, San Diego, CA). Mouse IgG isotype control mAbs were

purchased from eBioscience (San Diego, CA). To examine apopto-

sis, DCs were stained by FITC-Annexin-V and propidium iodide (PI)

or assessed by a FACS-based TUNEL assay (APO-DIRECTTM Kit;

BD Pharmingen). Samples were analyzed using a flow cytometer

(FACSCalibur; BD Bioscience) and data were processed using the

accompanying software (CellQuest; BD Bioscience).

DC-derived cytokine assays

Purified DCs were cultured in a flat-bottom 96-well micro-culture

plate at a density of 4 × 104 cells/well in 0.2 mL of culture medium, in

the presence of the TNF-α or LPS. Cell free supernatant was col-

lected 24 h later and levels of IL-12p70, TNF-α, IL-10, IL-6, IL-1β,

and IL-8 were measured by Cytometric Bead Array (CBA) assay with
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the Human Inflammation Kit (BD Bioscience) according to the pro-

tocols recommended by the manufacturer.

T cell proliferation assay

Heparinized blood samples were obtained from healthy individuals

and PBMCs were isolated by Ficoll-Hypaque centrifugation. CD3+ T

cells were purified with microbeads on auto-MACS columns using a

pan T cell Isolation kit (Miltenyi Biotech) according to the manufac-

turer’s instructions. Purified CD3+ T cell samples contained >98%

CD3+ T cells as determined by flow cytometry. DCs were irradiated

with an X-irradiator (Gammacell 40 Exactor; MDS Nordion Interna-

tional, Inc., Ottawa, Ontario, CA) at 30G. Purified allogeneic CD3+ T

cell seeded into a round-bottom 96-well micro-culture plate at

2.0 × 105 per well were co-cultured with purified, stimulated, irradi-

ated DCs at T:DC ratio of 20:1, 100:1, or 500:1. All experiments were

done in triplicate, and T cells alone were used as the background

control. The cultures were incubated for 4 days at 37°C in 5% CO2 in

air, pulsed with [3H]-thymidine (1.0 μCi/10 μL/well) during the last 8 h

of incubation, and then harvested onto glass filters with an auto-

mated cell harvester. Radioactivity was assessed by liquid scintil-

lation spectrometry (Tomtec, Orange, CT), and expressed as counts

per minute.

T cell-derived cytokine assays

Cell free supernatant was collected from Tcell-DC co-culture system

72 h later and levels of IFN-γ, TNF-α, IL-10, IL-6, IL-4, IL-2, and IL-17

were measured by CBA assay with the Human Th1/Th2/Th17 Kit

(BD Bioscience) according to the protocols recommended by the

manufacturer.

Statistical analyses and reproducibility

Experiments were repeated at least twice and usually three times.

Results were expressed as mean ± SD. Statistical analyses were

performed by independent t-test using the computer software PEMS

3.1 for Windows software (Package for Encyclopaedia of Medical

Statistics, Chengdu, China) or PASW Statistics 18. P < 0.05 was

considered significant. Significance was denoted by an asterisk in

the figures.
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