73 research outputs found

    Suppression of spin-pumping by a MgO tunnel-barrier

    Full text link
    Spin-pumping generates pure spin currents in normal metals at the ferromagnet (F)/normal metal (N) interface. The efficiency of spin-pumping is given by the spin mixing conductance, which depends on N and the F/N interface. We directly study the spin-pumping through an MgO tunnel-barrier using the inverse spin Hall effect, which couples spin and charge currents and provides a direct electrical detection of spin currents in the normal metal. We find that spin-pumping is suppressed by the tunnel-barrier, which is contrary to recent studies that suggest that the spin mixing conductance can be enhanced by a tunnel-barrier inserted at the interface

    Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers

    Full text link
    Spin pumping is a mechanism that generates spin currents from ferromagnetic resonance (FMR) over macroscopic interfacial areas, thereby enabling sensitive detection of the inverse spin Hall effect that transforms spin into charge currents in non-magnetic conductors. Here we study the spin-pumping-induced voltages due to the inverse spin Hall effect in permalloy/normal metal bilayers integrated into coplanar waveguides for different normal metals and as a function of angle of the applied magnetic field direction, as well as microwave frequency and power. We find good agreement between experimental data and a theoretical model that includes contributions from anisotropic magnetoresistance (AMR) and inverse spin Hall effect (ISHE). The analysis provides consistent results over a wide range of experimental conditions as long as the precise magnetization trajectory is taken into account. The spin Hall angles for Pt, Pd, Au and Mo were determined with high precision to be 0.013±0.0020.013\pm0.002, 0.0064±0.0010.0064\pm0.001, 0.0035±0.00030.0035\pm0.0003 and 0.0005±0.0001-0.0005\pm0.0001, respectively.Comment: 11 page

    Quantifying spin Hall angles from spin pumping: Experiments and Theory

    Full text link
    Spin Hall effects intermix spin and charge currents even in nonmagnetic materials and, therefore, ultimately may allow the use of spin transport without the need for ferromagnets. We show how spin Hall effects can be quantified by integrating permalloy/normal metal (N) bilayers into a coplanar waveguide. A dc spin current in N can be generated by spin pumping in a controllable way by ferromagnetic resonance. The transverse dc voltage detected along the permalloy/N has contributions from both the anisotropic magnetoresistance (AMR) and the spin Hall effect, which can be distinguished by their symmetries. We developed a theory that accounts for both. In this way, we determine the spin Hall angle quantitatively for Pt, Au and Mo. This approach can readily be adapted to any conducting material with even very small spin Hall angles.Comment: 4 pages, 4 figure

    Hyperfine Fields in an Ag/Fe Multilayer Film Investigated with 8Li beta-Detected Nuclear Magnetic Resonance

    Full text link
    Low energy β\beta-detected nuclear magnetic resonance (β\beta-NMR) was used to investigate the spatial dependence of the hyperfine magnetic fields induced by Fe in the nonmagnetic Ag of an Au(40 \AA)/Ag(200 \AA)/Fe(140 \AA) (001) magnetic multilayer (MML) grown on GaAs. The resonance lineshape in the Ag layer shows dramatic broadening compared to intrinsic Ag. This broadening is attributed to large induced magnetic fields in this layer by the magnetic Fe layer. We find that the induced hyperfine field in the Ag follows a power law decay away from the Ag/Fe interface with power 1.93(8)-1.93(8), and a field extrapolated to 0.23(5)0.23(5) T at the interface.Comment: 5 pages, 4 figure. To be published in Phys. Rev.

    Spin Seebeck insulator

    Full text link
    Thermoelectric generation is an essential function of future energy-saving technologies. However, this generation has been an exclusive feature of electric conductors, a situation which inflicts a heavy toll on its application; a conduction electron often becomes a nuisance in thermal design of devices. Here we report electric-voltage generation from heat flowing in an insulator. We reveal that, despite the absence of conduction electrons, a magnetic insulator LaY2Fe5O12 converts a heat flow into spin voltage. Attached Pt films transform this spin voltage into electric voltage by the inverse spin Hall effect. The experimental results require us to introduce thermally activated interface spin exchange between LaY2Fe5O12 and Pt. Our findings extend the range of potential materials for thermoelectric applications and provide a crucial piece of information for understanding the physics of the spin Seebeck effect.Comment: 19 pages, 5 figures (including supplementary information

    Femtosecond control of electric currents at the interfaces of metallic ferromagnetic heterostructures

    Get PDF
    The idea to utilize not only the charge but also the spin of electrons in the operation of electronic devices has led to the development of spintronics, causing a revolution in how information is stored and processed. A novel advancement would be to develop ultrafast spintronics using femtosecond laser pulses. Employing terahertz (1012^{12} Hz) emission spectroscopy, we demonstrate optical generation of spin-polarized electric currents at the interfaces of metallic ferromagnetic heterostructures at the femtosecond timescale. The direction of the photocurrent is controlled by the helicity of the circularly polarized light. These results open up new opportunities for realizing spintronics in the unprecedented terahertz regime and provide new insights in all-optical control of magnetism.Comment: 3 figures and 2 tables in the main tex

    Spin pumping in magnetic trilayer structures with an MgO barrier

    Get PDF
    We present a study of the interaction mechanisms in magnetic trilayer structures with an MgO barrier grown by molecular beam epitaxy. The interlayer exchange coupling, A ex, is determined using SQUID magnetometry and ferromagnetic resonance (FMR), displaying an unexpected oscillatory behaviour as the thickness, t MgO, is increased from 1 to 4 nm. Transmission electron microscopy confirms the continuity and quality of the tunnelling barrier, eliminating the prospect of exchange arising from direct contact between the two ferromagnetic layers. The Gilbert damping is found to be almost independent of the MgO thickness, suggesting the suppression of spin pumping. The element-specific technique of X-ray detected FMR reveals a small dynamic exchange interaction, acting in concert with the static interaction to induce coupled precession across the multilayer stack. These results highlight the potential of spin pumping and spin transfer torque for device applications in magnetic tunnel junctions relying on commonly used MgO barriers

    Thermoelectric Signal Enhancement by Reconciling the Spin Seebeck and Anomalous Nernst Effects in Ferromagnet/Non-magnet Multilayers

    Get PDF
    The utilization of ferromagnetic (FM) materials in thermoelectric devices allows one to have a simpler structure and/or independent control of electric and thermal conductivities, which may further remove obstacles for this technology to be realized. The thermoelectricity in FM/non-magnet (NM) heterostructures using an optical heating source is studied as a function of NM materials and a number of multilayers. It is observed that the overall thermoelectric signal in those structures which is contributed by spin Seebeck effect and anomalous Nernst effect (ANE) is enhanced by a proper selection of NM materials with a spin Hall angle that matches to the sign of the ANE. Moreover, by an increase of the number of multilayer, the thermoelectric voltage is enlarged further and the device resistance is reduced, simultaneously. The experimental observation of the improvement of thermoelectric properties may pave the way for the realization of magnetic-(or spin-) based thermoelectric devicesopen4

    Acoustic spin pumping as the origin of the long-range spin Seebeck effect

    Full text link
    The spin Seebeck effect (SSE) is known as the generation of 'spin voltage' in a magnet as a result of a temperature gradient. Spin voltage stands for the potential for spins, which drives a spin current. The SSE is of crucial importance in spintronics and energy-conversion technology, since it enables simple and versatile generation of spin currents from heat. The SSE has been observed in a variety of materials ranging from magnetic metals and semiconductors to magnetic insulators. However, the mechanism, the long-range nature, of the SSE in metals is still to be clarified. Here we found that, using a Ni81Fe19/Pt bilayer wire on an insulating sapphire plate, the long-range spin voltage induced by the SSE in magnetic metals is due to phonons. Under a temperature gradient in the sapphire, surprisingly, the voltage generated in the Pt layer is shown to reflect the wire position, although the wire is isolated both electrically and magnetically. This non-local voltage is direct evidence that the SSE is attributed to the coupling of spins and phonons. We demonstrate this coupling by directly injecting sound waves, which realizes the acoustic spin pumping. Our finding opens the door to "acoustic spintronics" in which phonons are exploited for constructing spin-based devices.Comment: 18 pages, 6 figure
    corecore