2,396 research outputs found

    Accuracy of B(E2; 0+ -> 2+) transition rates from intermediate-energy Coulomb excitation experiments

    Full text link
    The method of intermediate-energy Coulomb excitation has been widely used to determine absolute B(E2; 0+ -> 2+) quadrupole excitation strengths in exotic nuclei with even numbers of protons and neutrons. Transition rates measured with intermediate-energy Coulomb excitation are compared to their respective adopted values and for the example of 26Mg to the B(E2; 0+ -> 2+) values obtained with a variety of standard methods. Intermediate-energy Coulomb excitation is found to have an accuracy comparable to those of long-established experimental techniques.Comment: to be published in Phys. Rev.

    Atom holography

    Full text link
    We study the conditions under which atomic condensates can be used as a recording media and then suggest a reading scheme which allows to reconstruct an object with atomic reading beam. We show that good recording can be achieved for flat condensate profiles and for negative detunings between atomic Bohr frequency and optical field frequency. The resolution of recording dramatically depends on the relation between the healing length of the condensate and the spatial frequency contents of the optical fields involved.Comment: 8 pages, 5 figures, Late

    Atomic matter wave scanner

    Get PDF
    We report on the experimental realization of an atom optical device, that allows scanning of an atomic beam. We used a time-modulated evanescent wave field above a glass surface to diffract a continuous beam of metastable Neon atoms at grazing incidence. The diffraction angles and efficiencies were controlled by the frequency and form of modulation, respectively. With an optimized shape, obtained from a numerical simulation, we were able to transfer more than 50% of the atoms into the first order beam, which we were able to move over a range of 8 mrad.Comment: 4 pages, 4 figure

    Wave Packet Echoes in the Motion of Trapped Atoms

    Get PDF
    We experimentally demonstrate and systematically study the stimulated revival (echo) of motional wave packet oscillations. For this purpose, we prepare wave packets in an optical lattice by non-adiabatically shifting the potential and stimulate their reoccurence by a second shift after a variable time delay. This technique, analogous to spin echoes, enables one even in the presence of strong dephasing to determine the coherence time of the wave packets. We find that for strongly bound atoms it is comparable to the cooling time and much longer than the inverse of the photon scattering rate

    Ground state laser cooling using electromagnetically induced transparency

    Get PDF
    A laser cooling method for trapped atoms is described which achieves ground state cooling by exploiting quantum interference in a driven Lambda-shaped arrangement of atomic levels. The scheme is technically simpler than existing methods of sideband cooling, yet it can be significantly more efficient, in particular when several motional modes are involved, and it does not impose restrictions on the transition linewidth. We study the full quantum mechanical model of the cooling process for one motional degree of freedom and show that a rate equation provides a good approximation.Comment: 4 pages, 3 figures; v2: minor modifications to abstract, text and figure captions; v3: few references added and rearranged; v4: One part significantly changed, 1 figure removed, new equations; v5: typos corrected, to appear in PR

    Optics with an Atom Laser Beam

    Full text link
    We report on the atom optical manipulation of an atom laser beam. Reflection, focusing and its storage in a resonator are demonstrated. Precise and versatile mechanical control over an atom laser beam propagating in an inhomogeneous magnetic field is achieved by optically inducing spin-flips between atomic ground states with different magnetic moment. The magnetic force acting on the atoms can thereby be effectively switched on and off. The surface of the atom optical element is determined by the resonance condition for the spin-flip in the inhomogeneous magnetic field. A mirror reflectivity of more than 98% is measured

    Chaos assisted tunnelling with cold atoms

    Full text link
    In the context of quantum chaos, both theory and numerical analysis predict large fluctuations of the tunnelling transition probabilities when irregular dynamics is present at the classical level. We consider here the non-dissipative quantum evolution of cold atoms trapped in a time-dependent modulated periodic potential generated by two laser beams. We give some precise guidelines for the observation of chaos assisted tunnelling between invariant phase space structures paired by time-reversal symmetry.Comment: submitted to Phys. Rev. E ; 16 pages, 13 figures; figures of better quality can be found at http://www.phys.univ-tours.fr/~mouchet

    Bose-Einstein condensation in quasi2D trapped gases

    Full text link
    We discuss BEC in (quasi)2D trapped gases and find that well below the transition temperature TcT_c the equilibrium state is a true condensate, whereas at intermediate temperatures T<TcT<T_c one has a quasicondensate (condensate with fluctuating phase). The mean-field interaction in a quasi2D gas is sensitive to the frequency ω0\omega_0 of the (tight) confinement in the "frozen" direction, and one can switch the sign of the interaction by changing ω0\omega_0. Variation of ω0\omega_0 can also reduce the rates of inelastic processes, which opens prospects for tunable BEC in trapped quasi2D gases.Comment: 4 revtex pages, 1 figure, text is revised, figure improve

    Quantum computing implementations with neutral particles

    Full text link
    We review quantum information processing with cold neutral particles, that is, atoms or polar molecules. First, we analyze the best suited degrees of freedom of these particles for storing quantum information, and then we discuss both single- and two-qubit gate implementations. We focus our discussion mainly on collisional quantum gates, which are best suited for atom-chip-like devices, as well as on gate proposals conceived for optical lattices. Additionally, we analyze schemes both for cold atoms confined in optical cavities and hybrid approaches to entanglement generation, and we show how optimal control theory might be a powerful tool to enhance the speed up of the gate operations as well as to achieve high fidelities required for fault tolerant quantum computation.Comment: 19 pages, 12 figures; From the issue entitled "Special Issue on Neutral Particles

    Shape Coexistence and the Effective Nucleon-Nucleon Interaction

    Get PDF
    The phenomenon of shape coexistence is discussed within the self-consistent Hartree-Fock method and the nuclear shell model. The occurrence of the coexisting configurations with different intrinsic shapes is traced back to the properties of the effective Hamiltonian.Comment: 40 pages (16 text, 24 figures). The file may also be retrieved at http://csep2.phy.ornl.gov/theory_group/people/dean/shape_coex/shapes.htm
    • …
    corecore