3,007 research outputs found

    Ultrahigh magnetic field spectroscopy reveals the band structure of the 3D topological insulator Bi2_2Se3_3

    Full text link
    We have investigated the band structure at the Γ\Gamma point of the three-dimensional (3D) topological insulator Bi2_2Se3_3 using magneto-spectroscopy over a wide range of energies (0.55−2.20.55-2.2\,eV) and in ultrahigh magnetic fields up to 150\,T. At such high energies (E>0.6E>0.6\,eV) the parabolic approximation for the massive Dirac fermions breaks down and the Landau level dispersion becomes nonlinear. At even higher energies around 0.99 and 1.6 eV, new additional strong absorptions are observed with a temperature and magnetic-field dependence which suggest that they originate from higher band gaps. Spin orbit splittings for the further lying conduction and valence bands are found to be 0.196 and 0.264 eV

    The Radial Structure of the Cygnus Loop Supernova Remnant --- Possible evidence of a cavity explosion ---

    Get PDF
    We observed the North-East (NE) Limb toward the center region of the Cygnus Loop with the ASCA Observatory. We found a radial variation of electron temperature (kTe) and ionization timescale (log(\tau)) whereas no variation could be found for the abundances of heavy elements. In this paper, we re-analyzed the same data set and new observations with the latest calibration files. Then we constructed the precise spatial variations of kTe, log(\tau), and abundances of O, Ne, Mg, Si, and Fe over the field of view (FOV). We found a spatial variation not only in kTe and in log(\tau) but also in most of heavy elements. As described in Miyata et al. (1994), values of kTe increase and those of log(\tau) decrease toward the inner region. We found that the abundance of heavy elements increases toward the inner region. The radial profiles of O, Ne, and Fe show clear jump structures at a radius of 0.9 Rs, where Rs is the shock radius. Outside of 0.9 Rs, abundances of all elements are constant. On the contrary, inside of 0.9 Rs, abundances of these elements are 20--30 % larger than those obtained outside of 0.9 Rs. The radial profile of kTe also shows the jump structure at 0.9 Rs. This means that the hot and metal rich plasma fills the volume inside of 0.9 Rs. We concluded that this jump structure was the possible evidence for the pre-existing cavity produced by the precursor. If the ejecta fills inside of 0.9 Rs, the total mass of the ejecta was roughly 4\Msun. We then estimated the main-sequence mass to be roughly 15\Msun, which supports the massive star in origin of the Cygnus Loop supernova remnant and the existence of a pre-existing cavity.Comment: 37 pages, 14 figures. Accepted for publication of Ap

    Ten Years» Experience of Aortic Aneurysm Associated with Systemic Lupus Erythematosus

    Get PDF
    AbstractBackground: aortic aneurysm is a rare but life-threatening cardiovascular complication in patients with systemic lupus erythematosus (SLE). The purpose of this study was to clarify the characteristic clinical features and the pathological mechanism of aneurysmal formation in these patients. Methods: among 429 patients operated on for abdominal aortic aneurysm (AAA) during the past 10 years, five cases with SLE were treated surgically. Their clinical data were reviewed, and the resected aneurysmal wall of the five patients was also examined histologically. Results: the mean age of the patients with SLE was 55 years, which was statistically younger than that of the other patients (mean 77 years, s.d. 7.9, p <0.05). They had received long-term corticosteroid therapy for the treatment of SLE for a mean of 23 years. Histologically, destruction of the medial elastic lamina was characteristic. Four patients had no complications in the postoperative follow-up period (mean 4 years), while the remaining patient died of rupture of a dissecting aneurysm two years after operation.Conclusion : prolonged steroid therapy may play a major role in accelerating atherosclerosis, which can result in aortic aneurysmal enlargement, possibly together with primary aortic wall involvement and/or vasculitic damage in patients with SLE

    Statics and Dynamics of the Wormlike Bundle Model

    Get PDF
    Bundles of filamentous polymers are primary structural components of a broad range of cytoskeletal structures, and their mechanical properties play key roles in cellular functions ranging from locomotion to mechanotransduction and fertilization. We give a detailed derivation of a wormlike bundle model as a generic description for the statics and dynamics of polymer bundles consisting of semiflexible polymers interconnected by crosslinking agents. The elastic degrees of freedom include bending as well as twist deformations of the filaments and shear deformation of the crosslinks. We show that a competition between the elastic properties of the filaments and those of the crosslinks leads to renormalized effective bend and twist rigidities that become mode-number dependent. The strength and character of this dependence is found to vary with bundle architecture, such as the arrangement of filaments in the cross section and pretwist. We discuss two paradigmatic cases of bundle architecture, a uniform arrangement of filaments as found in F-actin bundles and a shell-like architecture as characteristic for microtubules. Each architecture is found to have its own universal ratio of maximal to minimal bending rigidity, independent of the specific type of crosslink induced filament coupling; our predictions are in reasonable agreement with available experimental data for microtubules. Moreover, we analyze the predictions of the wormlike bundle model for experimental observables such as the tangent-tangent correlation function and dynamic response and correlation functions. Finally, we analyze the effect of pretwist (helicity) on the mechanical properties of bundles. We predict that microtubules with different number of protofilaments should have distinct variations in their effective bending rigidity

    Six topics on inscribable polytopes

    Full text link
    Inscribability of polytopes is a classic subject but also a lively research area nowadays. We illustrate this with a selection of well-known results and recent developments on six particular topics related to inscribable polytopes. Along the way we collect a list of (new and old) open questions.Comment: 11 page

    Successful management of tracheo-innominate artery fistula with endovascular stent graft repair

    Get PDF
    AbstractTracheo-innominate artery fistula is a highly lethal complication after tracheostomy. A 37-year-old man who had undergone a tracheostomy 14 years earlier because of dysphagia after brain surgery had a tracheo-innominate artery fistula with exsanguinating hemorrhage from his tracheostomy site. After temporary control of the bleeding, a stent graft was implanted in the innominate artery through the brachial artery. The patient recovered uneventfully and remained well 14 months after the procedure, with no sign of infection. Endovascular stent grafting may be the treatment of choice for patients with tracheo-innominate artery fistula. (J Vasc Surg 2001;33:1280-2.

    An X-Ray Study of Supernova Remnant N49 and Soft Gamma-Ray Repeater 0526-66 in the Large Magellanic Cloud

    Full text link
    We report on the results from our deep Chandra observation (120 ks) of the supernova remnant (SNR) N49 and soft Gamma-ray repeater (SGR) 0526-66 in the Large Magellanic Cloud. We firmly establish the detection of an ejecta "bullet" beyond the southwestern boundary of N49. The X-ray spectrum of the bullet is distinguished from that of the main SNR shell, showing significantly enhanced Si and S abundances. We also detect an ejecta feature in the eastern shell, which shows metal overabundances similar to those of the bullet. If N49 was produced by a core-collapse explosion of a massive star, the detected Si-rich ejecta may represent explosive O-burning or incomplete Si-burning products from deep interior of the supernova. On the other hand, the observed Si/S abundance ratio in the ejecta may favor Type Ia origin for N49. We refine the Sedov age of N49, tau_Sed ~ 4800 yr, with the explosion energy E_0 ~ 1.8 x 10^51 erg. Our blackbody (BB) + power law (PL) model for the quiescent X-ray emission from SGR 0526-66 indicates that the PL photon index (Gamma ~ 2.5) is identical to that of PSR 1E1048.1-5937, the well-known candidate transition object between anomalous X-ray pulsars and SGRs. Alternatively, the two-component BB model implies X-ray emission from a small (R ~ 1 km) hot spot(s) (kT ~ 1 keV) in addition to emission from the neutron star's cooler surface (R ~ 10 km, kT ~ 0.4 keV). There is a considerable discrepancy in the estimated column toward 0526-66 between BB+PL and BB+BB model fits. Discriminating these spectral models would be crucial to test the long-debated physical association between N49 and 0526-66.Comment: Accepted by ApJ, 27 pages in total (aastex preprint format) including 5 figures (4 in color) and 5 table

    Schottky-based band lineups for refractory semiconductors

    Get PDF
    An overview is presented of band alignments for small-lattice parameter, refractory semiconductors. The band alignments are estimated empirically through the use of available Schottky barrier height data, and are compared to theoretically predicted values. Results for tetrahedrally bonded semiconductors with lattice constant values in the range from C through ZnSe are presented. Based on the estimated band alignments and the recently demonstrated p-type dopability of GaN, we propose three novel heterojunction schemes which seek to address inherent difficulties in doping or electrical contact to wide-gap semiconductors such as ZnO, ZnSe, and ZnS

    Fermi Large Area Telescope Observations of the Cygnus Loop Supernova Remnant

    Full text link
    We present an analysis of the gamma-ray measurements by the Large Area Telescope(LAT) onboard the \textit{Fermi Gamma-ray Space Telescope} in the region of the supernova remnant(SNR) Cygnus Loop(G74.0−-8.5). We detect significant gamma-ray emission associated with the SNR in the energy band 0.2--100 GeV. The gamma-ray spectrum shows a break in the range 2--3 GeV. The gamma-ray luminosity is ∼\sim 1×10331 \times 10^{33}erg s−1^{-1} between 1--100 GeV, much lower than those of other GeV-emitting SNRs. The morphology is best represented by a ring shape, with inner/outer radii 0∘^\circ.7 ±\pm 0∘^\circ.1 and 1∘^\circ.6 ±\pm 0∘^\circ.1. Given the association among X-ray rims, \halpha filaments and gamma-ray emission, we argue that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields adjacent to the shock regions. The decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray spectrum.Comment: accepted by ApJ, 34 pages, 6 figure
    • …
    corecore