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Bundles of filamentous polymers are primary structural components of a broad range of cytoskeletal struc-
tures, and their mechanical properties play key roles in cellular functions ranging from locomotion to mecha-
notransduction and fertilization. We give a detailed derivation of a wormlike bundle model as a generic
description for the statics and dynamics of polymer bundles consisting of semiflexible polymers interconnected
by crosslinking agents. The elastic degrees of freedom include bending as well as twist deformations of the
filaments and shear deformation of the crosslinks. We show that a competition between the elastic properties of
the filaments and those of the crosslinks leads to renormalized effective bend and twist rigidities that become
mode-number dependent. The strength and character of this dependence is found to vary with bundle archi-
tecture, such as the arrangement of filaments in the cross section and pretwist. We discuss two paradigmatic
cases of bundle architecture, a uniform arrangement of filaments as found in F-actin bundles and a shell-like
architecture as characteristic for microtubules. Each architecture is found to have its own universal ratio of
maximal to minimal bending rigidity, independent of the specific type of crosslink-induced filament coupling;
our predictions are in reasonable agreement with available experimental data for microtubules. Moreover, we
analyze the predictions of the wormlike bundle model for experimental observables such as the tangent-tangent
correlation function and dynamic response and correlation functions. Finally, we analyze the effect of pretwist
�helicity� on the mechanical properties of bundles. We predict that microtubules with different number of
protofilaments should have distinct variations in their effective bending rigidity.
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I. INTRODUCTION

Bundles of filamentous polymers like F-actin form pri-
mary structural components of a broad range of cytoskeletal
structures including stereocilia, filopodia, microvilli, cytosk-
eletal stress fibers, or the sperm acrosome. Actin-binding
proteins allow the cell to tailor the dimensions and mechani-
cal properties of the bundles to suit specific biological func-
tions. In particular, the mechanical properties of these
bundles play key roles in cellular functions ranging from
locomotion �1–3� to mechanotransduction �4� and fertiliza-
tion �5�. In view of this ubiquity, a detailed understanding of
bundle mechanics is fundamental to gaining a mechanistic
understanding of cellular function �6�. Quantifying the gov-
erning mechanical principles of these fundamental cytoskel-
etal constituents could also prove valuable in the design of
biomimetic nanomaterials.

In vitro experiments recently investigated the role of
actin-binding proteins such as fascin, � actinin, and I plastin
in mediating bundle mechanical properties �7�. Already, an
inspection of bundle conformations from fluorescence micro-
scope images makes it evident that the properties of the vari-
ous crosslinking proteins must be quite distinct. While
bundles formed by fascin show a compact form and remain
straight over several microns, bundles formed by � actinin or
filamin are wiggly and very lose �8–10�. The mechanical
properties of actin bundles formed by different crosslinking
proteins were quantified by a fluctuation analysis �7�, which
measures the magnitude of their thermal fluctuations. It was
found that the apparent bundle bending stiffness can be var-

ied over a substantial range by changing the type and relative
concentration of the crosslinker.

These intriguing mechanical properties can be understood
in terms of the wormlike bundle model �WLB�, which de-
scribes bundles as an assembly of semiflexible filaments in-
terconnected by crosslinking proteins �11,12�; for an illustra-
tion of the bundle architecture see Fig. 1. Unlike the standard
wormlike-chain model �WLC� �13,14�, the wormlike bundle
model exhibits a state-dependent bending stiffness �11� that
derives from a generic competition between the bending and
twist stiffness of individual filaments and their relative mo-
tion mediated by the stiffness of the crosslinkers. An impor-
tant aspect of the WLB model is that crosslinks may be very
efficient in constraining the lateral excursions of filaments

FIG. 1. �Color online� Wormlike bundle model. We consider
bundles that consist of regular arrangements of filaments. These are
assumed to be locked in place by crosslinking proteins. When the
bundle bends and twists in space, the filaments start to slide along
each other. This effect leads to shear deformation in the crosslinks.
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within the bundle but much less so in inhibiting their axial
motion. This is possible as the relative axial sliding of two
crosslinked filaments probes not only the elastic properties of
the crosslinking protein but also those of the binding domain
at which the protein is attached to the filament. The latter
may be of quite different rigidity than the protein itself. Un-
fortunately there are no single-molecule experiments yet
which would quantify the mechanical and binding properties
of actin crosslinking proteins attached to a pair of F-actin
filaments �15�. In the WLB model, the mechanical properties
of the crosslinks are described by a single shear-stiffness k�

for the relative sliding of the constituent filaments.
An important finding within the wormlike bundle model

is that the mechanical properties of bundles can be classified
into three distinct bending regimes that are mediated by both
crosslink type and equally importantly by bundle dimen-
sions, namely, diameter and length �11�. Taking into account
the mechanical properties of filaments and crosslinker at a
microscopic level is a virtue of the model making it quite
verstile. It reduces to a well�defined continuum limit but is
equally applicable to bundles with as few as two filaments.
This microscopic perspective may prove a valuable starting
point to address more complex questions related to bundle
mechanical properties. This may include problems such as
disorder, lattice defects �16�, or filament fracture �17�.

While previously we have provided a formulation only for
plane-bending in two dimensions �12�, here we give a full
derivation of the WLB Hamiltonian in three spatial dimen-
sions. This includes bending as well as twist deformations.
We explore the predictions of the WLB model for experi-
mental observables such as the tangent-tangent correlation
function and dynamic response functions. Moreover, we dis-
cuss the effects of different bundle geometries on their me-
chanical properties. In this respect, we will view microtu-
bules as a bundle of �proto-�filaments arranged on the surface
of a cylinder; compare Fig. 2. This shell-like bundle archi-
tecture is contrasted with a uniform distribution of filaments
as found for F-action bundles �18,19�. Finally, we discuss
how helicity influences bundle mechanics.

II. MODEL DEFINITION

We consider bundles of length L that consist of N parallel
filaments. While the filaments may form a disordered lattice
structure, we will focus our attention here to the cases of
regular arrangements. In particular we will treat in detail the
square lattice and the cylindrical tube �see Fig. 2�.

Each filament is modeled mechanically as an extensible
wormlike polymer with stretching stiffness ks, bending rigid-
ity �b and twist rigidity �t. Filaments are irreversibly
crosslinked to their nearest neighbors by crosslinks with
mean axial spacing �. The crosslinks are modeled to be com-
pliant in shear along the bundle axis with finite shear-
stiffness k�, and to be inextensible transverse to the bundle
axis, thus constraining the interfilament distance, b, to be
constant �see Fig. 2�. This assumption, which neglects
crosslink stretching deformations, is based on the recognition
that the shearing mode involves deformation of the crosslink
and its binding domain to the filament. The resulting stiff-
ness may indeed be much lower than that of a crosslink in
isolation.

Filament stretching is characterized by the axial displace-
ment uk�s� of filament k at axial position s along the back-
bone. To describe bundle bending and twisting we define
�d1 ,d2 ,d3� to be a material frame fixed to the bundle central
line at each arclength position s. The vector d3� t is the
tangent to the space curve traced out by the central line,
while the two vectors d1 and d2 lie within the cross-section
of the bundle. The position of each filament in the cross-
section is parametrized in terms of a vector Rk�s�=Akd1�s�
+Bkd2�s�, where Ak and Bk are the material-frame coordi-
nates of filament k; they are constants independent of ar-
clength s and deformation of the central line �see Fig. 2�. As
one moves along the bundle backbone, the material frame
rotates according to Frenet-Serret equations, �sd=��d.
The rate at which this frame changes, when going along the
backbone, defines the generalized curvatures �
= ��1�s� ,�2�s� ,�3�s��, which, in addition to the axial dis-
placement uk, represent the basic kinematic degrees of free-
dom of the bundle.

To illustrate the Frenet-Serret equations, consider the case
of pure twist, for which the tangent is just a constant, �sd3
=0. The Frenet-Serret equations then reduce to �sd1=
−�3d2 and �sd2=�3d1, while �1=�2=0. For constant rate
of twist, �3=�, the solution to these equations are just har-
monic functions, e.g., d1=ey cos �s+ez sin �s. Thus, under
homogeneous twist, the two vectors d1 and d2 rotate at con-
stant angular velocity � around the direction set by the tan-
gent. A second example, planar bending, is illustrated in
Fig. 3.

A. WLB Hamiltonian

Neglecting all nonlinear effects, we are now going to de-
velop a simple expression for the bundle energy which is
harmonic in its degrees of freedom, axial displacement uk
and generalized curvatures ��.

This WLB Hamiltonian consists of three contributions,
HWLB=H0+Hstretch+Hshear. The first term corresponds to the
standard wormlike-chain Hamiltonian

(b)(a)

(c) (d)

FIG. 2. �Color online� Illustration of the bundle geometries con-
sidered. The position of the kth filament in the cross-sectional plane
��y ,z� plane� is given by Rk. F -actin bundle architecture �left�:
filaments are arranged on a square lattice. Microtubule architecture
�right�: filaments are arranged on the surface of a cylinder.
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H0 =
N

2
�

0

L

ds��b��1
2 + �2

2� + �t�3
2� . �1�

Writing this, we assume that each filament follows effec-
tively the same space curve as the center line. While, in
general, one should account for the curvatures, �k, of each
individual filament separately, this would only lead to cor-
rection factors that can be neglected for our purposes. Con-
sider, for example, planar bending of the central line, �1
=1 /	, where 	 is the radius of curvature. The filaments that
lie at a distance R away from the central line naturally have
a different radius of curvature, 	
R, and thus a different
bending energy. The magnitude of the correction term rela-
tive to �1

2 is small since it scales as �R /	�2, i.e., we assume
the typical curvatures to be smaller than the bundle radius
�for more details, see Appendix B�.

As to the twist degree of freedom, in Eq. �1� we do not
allow for the possibility of relative twisting of the individual
filaments �see Sec. V and Appendix B for a discussion of this
effect�. We assume that twist is only due to the “bundle-
twist” �3 of the central line. This assumption is reasonable
in tightly bound bundles, where the filaments are connected
by many crosslinks. In this state, the filaments and their rela-
tive orientation can be assumed to be locked-in by the
crosslinker.

The second term in the Hamiltonian, Hstretch=	kHstretch
k ,

accounts for filament stretching. It depends on the difference
in axial displacement, uk, between two crosslinks at ar-
clength positions si and si+�, respectively.

Hstretch
k =

ks

2 	
i

�uk�si + �� − uk�si��2 →
ks�

2
�

0

L

ds
 �uk

�s
�2

,

�2�

where we have performed the continuum limit 	i→�ds /� to
arrive at the second line. The spring constant ks��� is the
single filament stretching stiffness on the scale of the
crosslink spacing �.

The particular form for ks depends on the system under
consideration. For high crosslink concentrations �small ��,
the segment behaves as a homogeneous elastic beam, char-
acterized by a Youngs modulus E and ks

beam
Eb2 /�. The
combination ks� that enters the Hamiltonian is independent

of �, as it should: the mechanical stretching stiffness of a
beam cannot depend on the properties of the crosslinks.

For small concentrations of crosslinks �large �� entropic
effects become relevant and the stretching stiffness is that of
a thermally fluctuating wormlike chain with persistence-
length lp. In this case one has ks

entr
�blp /�4, which implies
that the combination ks�
�−3 does depend on the crosslink
spacing �. This is related to the fact that the formation of a
crosslink suppresses thermal undulations �reduces entropy�
and thus increases the entropic stretching stiffness. Equating
both stretching stiffnesses, ks

beam
ks
entr one finds the critical

crosslink concentration, �c
3
b2lp, at which the crossover

from enthalpic to entropic elasticity takes place.
In the case of microtubules, which will be treated in Sec.

IV, the crosslink spacing � is given by the tubulin size and
the stretching stiffness is modeled as for an elastic beam.

The third energy contribution, Hshear=	lkHshear
lk , results

from the crosslink-induced coupling of neighboring fila-
ments. The relative axial motion of a filament pair �l ,k� at a
given point of the backbone is described by the crosslink
shear displacement, which is the sum of a geometric contri-
bution, �lk, and the relative stretching of neighboring fila-
ments, �ulk=ul−uk. The geometric part results from the ar-
clength mismatch between the two filaments, induced by a
bending and twisting of the bundle central line. As in Eq. �2�,
we first write the shear energy as a sum over all crosslink
positions si and then perform the continuum limit, to get

Hshear
lk =

k�

2 	
i

��lk�si� + �ulk�si��2 →
k�

2�
�

0

L

ds��lk + �ulk�2,

�3�

where k� is the shear stiffness of the individual crosslink.
For any bundle deformation, the associated value of �lk

can be compensated for by stretching the filaments, making
the shear energy vanish when �ulk=−�lk. At the same time,
however, this would increase the stretching energy, which
may be unfavorable if the stretching stiffness ks is rather
large. For deformations on the scale of the bundle length
�u�
u /L� the ratio of both energies gives the important pa-
rameter �=k�L2 /ks�

2, which quantifies the relative strength
of both deformation modes �11�.

As a final ingredient to the model, we need to calculate
the dependence of �lk on the bundle curvatures, ��. Without
going into the details of an explicit derivation, we here just
give the resulting expression. For more details, we refer the
reader to Appendix C. The special case relevant for the mi-
crotubule geometry is also dealt with in some detail in �20�.
To linear order in ��, we find

�lk = blk cos �lk
ylk�3 − �
0

s

dt�2�t��
− blk sin �lk
zlk�3 − �

0

s

dt�1�t�� , �4�

where we defined blk= �blk� as the distance between the fila-
ment pair and �lk as the angle of blk with respect to the z

FIG. 3. �Color online� Illustration for the definition of the gen-
eralized curvatures �. Under planar bending one can take �sd1=0
and the third Frenet-Serret equations reduces to �sd3=�1d2. Thus,
�1�s is just the change in the tangent d3 when going from the
arclength position s to s+�s.
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axis. Furthermore, �ylk ,zlk� are defined as the cross-sectional
coordinates of the midpoint between the filament pair.

In contrast to H0, which is an expansion in the generalized
curvatures ��, the shear energy Hshear is a function of the
integrated curvatures, since �
b�s�
bL�. For terms be-
yond the harmonic contribution to be negligible, one has to
assume that the shear displacement is sufficiently small, �
�a, where a is some microscopic length-scale related to the
size of the crosslink. In terms of the bundle curvatures this
implies L��a /R
1, which is much more restrictive than
the range R��1, over which H0 can be approximated by a
harmonic form. As a consequence the bundle is only allowed
to make small excursions from its initial state, an assumption
which is usually well satisfied in bundles of stiff polymers
like actin or microtubules, but certainly breaks down under
extreme loading conditions �e.g., to describe postbuckling�
or in more flexible objects like DNA. For large bundle de-
flections, it may be important to consider the periodicity of
the crosslink binding sites along the filament backbone. If
one allows crosslinks to explore these different sites, then
Hshear should be a periodic function of the shear displace-
ment, as for example studied in Ref. �21�. Note, that this
approach needs the unbinding/rebinding of cross-links. In
our present formulation we ask the simpler question of how
a given, i.e., static, crosslink configuration influences the
mechanical/dynamical properties of the bundle.

Staying within the “weakly bending” assumption, we can
reformulate the generalized curvatures in terms of the lab-
frame Euler angles �22,23�

�1 =
�


�s
sin � sin � +

��

�s
cos � ,

�2 =
�


�s
cos � sin � −

��

�s
sin � ,

�3 =
��

�s
+

�


�s
cos � .

As reference state, we take 
0=� /2, �0=� /2, and �0=s�0,
which corresponds to a straight, but pretwisted bundle that
points along the x axis. For small excursions around this
reference state, we can linearize the equations such that

�1 =
�


�s
sin �0 +

��

�s
cos �0,

�2 =
�


�s
cos �0 −

��

�s
sin �0,

�3 =
��

�s
, �5�

and the angles are now measured relative to the reference
state. As expected, the pretwist �0 leads to a coupling of the
angles � and 
. In the following we are primarily concerned

with the case of vanishing pretwist. Then, the coupling terms
vanish and we can simply set

��1,�2,�3� = ���,
�,��� .

We will come back to the case of pretwist in Sec. V.

B. Examples for the arclength mismatch �

For the purpose of illustration we provide some examples
of how the shear displacement � depends on the geometry of
the bundle cross-section and the deformation of its central
line.

If the bundle consists of only two filaments �24� �geom-
etry of a ribbon�, we have y=z=�=� /2 as the central line
and the midline between the two filaments are identical. In
this case, � simplifies to

� = b��s� , �6�

which is illustrated in Fig. 4. Note that twist ��3� does not
contribute, as both filaments twist around the central line
symmetrically.

A particular case of this two-filament bundle has been
considered in a set of articles �25–27�, where the crosslinks
are assumed to be rigid with respect to shear, i.e., k�→�. To
satisfy a vanishing arclength mismatch � one thus requires
�1�−d2� · t=0. This means that the unit vector d2, which
points from one filament to the other, must not rotate in the
direction of the tangent t. In other words, d2 must equal the
binormal. Thus, the ribbon orientation is completely speci-
fied by the space curve traced by the central line.

A second example is the axoneme in eukaryotic flagellae
�20�. There, filaments �microtubule doublets� are arranged on
the surface of a cylinder, just as the protofilaments in a single
microtubule. Switching to polar coordinates in the cross-
sectional plane �see Fig. 2�, �y ,z�→ �R ,��, �=�+� /2, we
find

� = − bR�� + b
 sin � + b� cos � . �7�

A similar expression, disregarding the possibility of twisting,
has been given by Mohrbach et al. �28�. The structure of the
second and third term is the same as in Eq. �6�, additionally
taking into account the modified orientation in the cross-
sectional plane, as described by the angle �. The origin of
the first term is illustrated in Fig. 5 and elaborated on in
Appendix C.

u1

u2

b

b

θ

θ

FIG. 4. �Color online� Illustration of crosslink shear deformation
for the case of a two-filament bundle. Bundle deflection through the
angle � leads to the arclength mismatch, �=b�. The filaments have
to stretch the relative amount u1−u2=b�, in order to keep the
crosslink �dashed line� undeformed with zero shear energy.

HEUSSINGER, SCHÜLLER, AND FREY PHYSICAL REVIEW E 81, 021904 �2010�

021904-4



Consider now the case of planar bending. This will make
the connection to continuum elasticity particularly clear. Un-
der planar deformation the bundle is described by the one
variable ��=� such that the shear deformation is simply �
=b��s�
b�xuy. Here, uy is the displacement of the bundle
transverse to the bundle axis �in the y direction�. This latter
form makes clear that the shear deformation represents one
part of the strain tensor component �xy = 1

2 ��xuy +�yux�. The
second part, �yux
b�ulk is the continuum version of relative
filament stretching �see Eq. �3��.

The elastic symmetries relevant to the WLB model de-
pend on the arrangement of the filaments in the cross-
section. If there is rotational symmetry with respect to the
bundle axis, one speaks of transversly isotropic elastic bodies
�29�. While, in general, this has five first order elastic con-
stants, our model has only two, augmented by the �second
order� bending/twisting elasticity of the individual filaments
which is not accounted for in continuum elasticity. The sim-
plification arises from assuming transverse inextensibility as
well as neglecting cross-sectional shape changes. Grason et
al. �30,31� use a two-dimensional continuum description for
these transverse degrees of freedom. Their phenomenologi-
cal model, based on symmetry arguments, is completely
compatible with our “microscopic” approach. The advantage
of our description is that it is also applicable for nonsymmet-
ric situations as well as to provide a direct interpretation of
the coupling constants. One example of this advantage may
be found in Ref. �11�. There, we investigated the effect of
cutting the filaments into shorter minifilaments. The resulting
change in the coupling constants can only be determined
within a microscopic approach as ours.

Cross-sectional shape changes are also important in the
failure of hollow tubes under bending. One relevant effect
is the Brazier effect �32�, which describes the increasing
ovalization of the cross-section under the action of a bending
moment. In the present formulation of the model these
nonlinearities are not accounted for. For a discussion of po-
tential modifications to include cross-sectional deformations,
we refer the reader to the outlook section at the end of this
article.

C. Definition of effective bending and twist rigidities

It should be clear from the way the Hamiltonian was de-
rived that the model is applicable to bundles with arbitrary
�ordered/disordered� arrangements of filaments in the cross-
section. In the remainder of this article we will focus our
attention to bundles with highly symmetric cross-sections,
where the filaments either form a rectangular array or a hol-
low tube.

In view of recent experiments probing the mechanical
or statistical properties of individual bundles in vitro �7�, we
head at a description of the bundle in terms of effective
bending and twist rigidities. These are defined with respect to
the standard wormlike chain model. To arrive at the proper
expressions we have to integrate out the internal stretching
variable u, which in general is not observable in experiment.

To show how this works, we symbolically write the par-
tition function as Z=�D
Z�
�, where 
 signifies the set
of Euler angles 
�s�, ��s�, and ��s�. The constrained parti-
tion function then reads Z�
�=�D�u�exp�−�H��
 ,u���
�exp�−�W�
��.

The integration over the u variables can easily be per-
formed. As the Hamiltonian is harmonic we are left with
only Gaussian integrals, which are evaluated in Fourier
space. The resulting potential of mean force W�
� can be
written in the form of a wormlike-chain Hamiltonian

W�
n� =
L

4 	
n

qn
2��B�n��
n

2 + �n
2� + �T�n��n

2� , �8�

with effective bending and twist rigidities �B�n� and �T�n�,
respectively. We note that in the symmetric situations con-
sidered here there is no coupling between the different de-
formation modes bending and twisting �see Appendix A�. In
contrast to the usual WLC, the effective bend and twist ri-
gidities are in general dependent on the mode-number n and
thus on the wavelength of the deformation. This effect and
the discussion of its consequences is the central topic of the
remaining sections.

III. F-ACTIN BUNDLE ARCHITECTURE

In the following sections, we will focus our attention to
bundles with N= �2M�2 filaments that form a rectangular ar-
ray �see Fig. 2�. The angle � that specifies the orientation of
the filament pair in the cross-section is then �=0, � /2 as
filaments are either arranged along the y or the z axis. Each
filament can be labeled by the pair of indices �k ,k��, which
denotes its location in the kth row and the k�th column of the
square cross-section. We choose k , k�=−M +1, . . . ,M, such
that the center of the bundle lies between k , k�=0 and
k , k�=1. As mentioned above the different deformation
modes decouple in harmonic order. We can thus investigate
bending independently from twisting. Also, the two space
directions decouple and we can reduce the model to an ef-
fective two-dimensional description �12�.

RΩ

RΩb

t

b
3

3

FIG. 5. �Color online� Illustration of crosslink shear deformation
for a twisted microtubule. Indicated is a filament pair that winds
around the microtubule cylinder �radius R� taking an angle R�3

with the cylinder axis t. The resulting arclength mismatch is given
by �=bR�3.

STATICS AND DYNAMICS OF THE WORMLIKE BUNDLE MODEL PHYSICAL REVIEW E 81, 021904 �2010�

021904-5



A. Effective bending rigidity

The shear Hamiltonian reduces to

Hshear =
Mk�

�
�

0

L

ds 	
k=−M+1

M−1

�uk+1 − uk + b��2, �9�

where we used Eq. �4� with 
=�=0. Owing to the effective
two-dimensional description only one layer of filaments
needs to be considered. The index k�, which numbers the
orthogonal direction, drops out. By following the recipe out-
lined above, we eliminate the axial strain variable uk. By
approximating uk by a linear function, uk=�u · �k+1 /2� �see
discussion below� we arrive at the following result for the
effective bending rigidity �33� as defined in Eq. �8�:

�B�n� = N�b�1 + 
 12�̂b

N − 1
+ �qn��2�−1� . �10�

Here, we have defined a characteristic wavelength

� =� 2M

�2M − 1�
·� �b�

k�b2 , �11�

and a dimensionless bending rigidity �̂b=�b / �ks�b2�. In
terms of the quantities � and �̂b the previously defined �
=k�L2 /ks�

2 can be rewritten as �
 �̂b�L /��2. If the fila-
ments behave as homogeneous elastic beams, �̂b is just a
number independent of bundle geometry or crosslink spac-
ing. For any numeric computation we will, for specifity, as-
sume that �̂b=1 /12, which corresponds to beams with square
cross-sections �34�.

The characteristic feature of Eq. �10� is the wavelength
dependence �see Fig. 6�. For wavelengths qn

−1 in the interval
1 /�N�qn��1 the bending stiffness decreases as �B�n�

k�qn

−2. In Ref. �11�, we have termed this the intermediate
or shear-dominated regime as the bending rigidity is propor-
tional to the shear stiffness of the crosslinks. It is in this
parameter regime that the bundle behaves qualitatively dif-

ferent than either a homogeneous beam �obtained in the
“fully coupled” limit of qn��1 /�N� or an assembly of “de-
coupled” filaments �qn��1�.

Another important feature of Eq. �10�, which is indepen-
dent of the specific q-dependence, is the ratio of maximal to
minimal bending rigidity, r=�max /�min=1+ �N−1� /12�̂b.
This only depends on the number of filaments and the di-
mensionless bending rigidity �̂b.

While integrating out the stretching variables uk can be
performed exactly, Eq. �10� is based on the additional as-
sumption that axial strains are linearly increasing through the
cross-section, uk=�u · �k+1 /2�. The exact profile for uk is
calculated in the appendix and displayed in Fig. 7; compared
to the linear profile it shows an enhancement of strain toward
the bundle periphery.

However, the ensuing value for the bending stiffness is
largely insensitive to the linear approximation �35�. We
speculate that the nonlinearities in the axial strain may even-
tually be important for nonlinear material properties, as, for
example, strain induced rupture. The increased strain in the
outermost filaments brings them closer to their threshold for
rupture and thus makes them more susceptible to this mode
of failure.

In order to make contact with continuum models for beam
bending, we perform a continuum limit, by letting N→� but
keeping the bundle aspect ratio D /L
bM /L constant. Then,
bundle length L has to grow with M as L�M�
M. In par-
ticular, this implies that fewer and fewer modes n belong to
the decoupled regime �where qn

−1���. Eventually, this re-
gime, where filaments bend independently, ��B�n��N�b� is
no longer accessible. In effect, this means that the bending
stiffness �b of the individual filaments can be neglected, just
as in “normal” continuum elasticity, where higher order gra-
dients �O����� are not accounted for from the start.

In this continuum limit, the result from the linearization
assumption, Eq. �10�, reduces to the Timoshenko model for
beam bending �36�, which was recently used to interpret
bending stiffness measurements on microtubules �37,38� and
carbon nanotube bundles �39�,
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FIG. 6. �Color online� Effective bending rigidity, Eq. �10�, as a
function of mode-number, q�, and for the set of bundle sizes N
=4,9 ,16,25 �from bottom to top�. In the fully coupled and the
decoupled regimes �corresponding to small and large q� the bending
rigidity is constant. At intermediate values of q the bending rigidity
scales as �B�n�
k�qn

−2 �shear-dominated regime�.
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FIG. 7. �Color online� Dependence of axial strain uk on k, the
distance from the bundle central line. Decreasing the dimensionless
shear-stiffness �=k�L2 /ks�

2 �from top to bottom� the strain is re-
duced but not in a linear fashion. The outer layers of the bundle
remain stretched stronger than the inner ones.
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�B
TIMO�n� =

N2�b

1 + �qnD�2E/12G
. �12�

To allow for comparison with continuum elasticity, we have
used the expressions ks�=Eb2 and �b=Eb4 /12 applicable for
homogeneous beams of square cross-section and defined the
shear-modulus G=k� /�.

On the other hand, one can equally derive a continuum
limit from the exact expression for �B�n� �as presented in
Appendix A 1�. This gives

�B
CONT�n� =

N2�b

�qnD�2E/12G

1 −

tanh�qnD�E/4G�

qnD�E/4G
� .

�13�

Both expressions, Eqs. �12� and �13�, are compared in
Fig. 8. One infers that the approximation �Timoshenko
theory� overestimates the exact solution by no more than 6%.
The difference can partly be compensated for by introducing
a shear-correction factor ��1.2� in the denominator of Eq.
�12�.

B. Tangent-tangent correlation function

In this section, the implications of a mode-number depen-
dent bending rigidity are further elaborated by discussing
the concept of the persistence length. The persistence length
of a single WLC may be defined in terms of the competition
of bending and thermal energies, lp=� /kBT. With this
definition, bending rigidity and persistence length are basi-
cally identical. In the framework of the WLB this would
lead to a mode-number dependent persistence-length lp�n�
=�B�n� /kBT.

For the WLC, the persistence length is also the length
scale over which the tangent-tangent correlation function de-
cays

�t�s�t�0�� = exp�− s/lp� . �14�

This simple exponential form is no longer valid for the
WLB as can be illustrated by considering planar bending

with 
=0. Then, the tangent-tangent correlation function is
easily inferred from the angular fluctuations �24� as

�t�s�t�0�� = exp�−
1

2
����s� − ��0��2�� , �15�

with

����s� − ��0��2� =
1

Nlp
�A − 1

A
s +

�

A�A
�1 − e−s�A/��� ,

�16�

and A=1+12�̂b / �N−1�. Forcing such a complex expression
into the form given by Eq. �14� implies an arclength-
dependent persistence length, lp�s�. At short distances, one
recovers the decoupled regime and lp�s�=Nlp, while at long
distances, lp�s�=N2lp as found in the fully coupled regime.

Note, that there is no immediate relation between this
lp�s� and the lp�n� defined above. The Fourier transform of
lp�n� is, instead, given by the following expression:

lp
��s� =

N�b

kBT

L��s� +

L

�

e−�A−1s/�

�A − 1
� . �17�

This quantity appears in the elastic energy expressed in
real space as

HWLB = kBT� ���s1�lp
��s1 − s2����s2�ds1ds2, �18�

which is a nonlocal function of arclength. The length depen-
dence obtained here is markedly different from that found in
the correlation function, Eq. �16� �see Fig. 9�. While lp�s� is
constant at large distances, lp

��s� decays exponentially and
vanishes over the length scale � /�A−1
��N / �̂b, which
corresponds to the onset of the fully coupled regime.

A similar nonlocal energy function is obtained when con-
sidering the fluctuation properties of elastic membranes. In-
plane shear and compression modes lead to a renormalized
bending rigidity for the out-of-plane fluctuations �40,41�. In
contrast to bundles, however, there the kernel is long ranged
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FIG. 8. �Color online� Continuum limit of effective bending
rigidities as a function of x= �qnD�2E /12G. Comparison of exact
solution �solid line�, Eq. �13�, with approximation �dotted line�, Eq.
�12�. Inset: relative error between both expressions. The approxima-
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FIG. 9. �Color online� Comparison of the different persistence
lengths as function of arclength s. The lp as defined via Eq.
�16� increases with increasing distance and saturates at the value
lp�s→��=n2 �here, n=16�. On the other hand, lp

� as taken from Eq.
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łp�s�
1 /s, which asymptotically leads to a flat membrane
phase.

Concluding this section, we find that it is impossible to
speak of a single persistence length without specifying the
precise experimental conditions as well as the observable
under consideration �here, tangent-tangent correlation func-
tion�. The WLB model presents a framework within which a
length-dependent bending stiffness can be understood. How-
ever, we would like to emphasize that the fundamental quan-
tity is the qn-dependent �B�n� as presented in Eq. �10� or
below in Eq. �26�. It depends on wave number in a universal
way, independent of the type of measurement. The depen-
dence on bundle length, in contrast, arises through a specific
transformation to real space and may produce different re-
sults depending on the observable under consideration.

C. Frequency-dependent correlation and response functions

In our previous publications �11,12�, we have calculated
several thermodynamic observables and showed that the
mode-dependent bending stiffness of a WLB may lead to
drastic modifications of their scaling behavior. Here, we
widen the scope of this analysis by discussing dynamic ob-
servables. In analogy to the usual overdamped dynamics of a
WLC we can discuss the dynamics of a WLB by substituting
the mode-dependent bending stiffness in the standard Lange-
vin equation of motion for the transverse bending modes
r��qn , t�,

�
�r�

�t
= − �B�n�qn

4r� + ��qn,t� . �19�

With this, one obtains for the reduced correlation function

C�t� ª L−1�
0

L

��r��s,t� − r��s,0��2�ds ,

=
kBT

L
	

n

1 − e−t/�n

�B�n�qn
4 , �20�

with the relaxation times �n=� /�B�n�qn
4. For WLCs �constant

�B���, one finds a scaling regime at times t��1
�L4 /�,
where C�t�
 t3/4 �42–44�.

For WLBs, on the other hand, one has to use the
q-dependent effective bending stiffness, Eq. �10�, instead. As
the term �q��−2 multiplies the q4 contribution in Eq. �20�,
one finds the correlations to grow in time as CWLB�t�
 t1/2.
Of course, this result is only valid as long as the q� term
dominates the effective bending stiffness, i.e., as long as the
bundle is in the intermediate regime. In fact, there will be a
complex crossover scenario

C�t� 
 �
�Nlp�−1
N�bt

�
�3/4

, t � t1

�Nlp�−1�2
N�bt

�
�1/2

, t1 � t � t2

�Nlp�−1
 �̂b

N
�1/4
N�bt

�
�3/4

, t2 � t � t3

�Nlp�−1L3 �̂b

N
, t � t3,

� �21�

with the crossover times t1=��4 /N�b and t2= t1
�̂b

N governing
the crossover from the decoupled to the intermediate and the

fully coupled regimes. At times larger than t3= t1
�̂b

N
L4

�4 , the
correlation function saturates.

From the correlation function, one can furthermore calcu-
late the response function �� measuring the linear response
to transverse forces. Using the fluctuation-dissipation theo-
rem and the Kramers-Kronig relations, one finds

����� = 	
n

1

L

1

�B�n�qn
4 − i��

. �22�

This contrasts with the response function �� for stretching
forces

����� = 	
n

1

lp�n�
1

�B�n�qn
4 − i��/2

, �23�

which is sometimes taken as a starting point to determine the
high-frequency response of entangled solutions of stiff poly-
mers �45–49�, The transverse response, on the other hand,
has been argued to relate to a “microrheological modulus”
�50,51� that is measured locally by imbedding probe beads
into the network. Unfortunately, for a WLC, both functions
are hardly indistinguishable, and only differ by the constant
factor �� /��=L / lp. The high-frequency behavior in both
cases is �
�−3/4.

In the case of a WLB, things are somewhat different, as
the additional factor L / lp�q� in the longitudinal response
function not only changes the prefactor but also modifies the
functional form with respect to frequency �see Fig. 10�.

For similar reasons as in the discussion of the correlation
function, one expects an intermediate regime with �−1/2, at
least in the transverse response. This should lead to measur-
able signatures in microrheological experiments on bundled
F-actin systems. Due to the additional q-dependence in the
denominator, the longitudinal response, �� shows a smooth
crossover between the two asymptotic regimes of fully
coupled and decoupled bending, as explained in the figure.

D. Effective twist rigidity

We now turn to the discussion of the twist mode. In this
case, the Euler angles 
 and � in Eq. �4� are zero such that
the shear Hamiltonian reduces to
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Hshear =
k�

2�
�

0

L

ds	
lk

��ulk + bdlk���2, �24�

where we defined the geometric factor dlk=ylk cos �lk
−zlk sin �lk.

As may already be apparent from comparing Eq. �9� with
Eq. �24�, the stretching deformation u couples differently to
twist �k�u��� as to bending �k�u��. The difference being the
additional derivative occurring in Eq. �24�. Effectively, this
means that the resulting twist rigidity will not depend on
mode-number qn but receive a constant correction to the
single filament value �t.

Let us first assume that the filaments are inextensible.
Then, the u-terms in the Hamiltonian identically vanish and
the effective twist rigidity can simply be read off from the
terms multiplying ��2,

�T ª N�t�1 +
N − 1

6

�t

b
�−2� . �25�

Here, we have defined �tª
�2M / �2M −1���t� /k�b2, which

is similar to � defined above, with �b substituted by �t. Un-
like �, however, it multiplies the constant length b, the lateral

distance between neighboring filaments. As anticipated, there
is no mode-number dependence.

By introducing bundle diameter D and effective shear
modulus G �as in the discussion leading to Eq. �12��, the
second term takes a form well-known from continuum
theory, 
GD4 �34�. Thus, we find an effective twist rigidity,
Eq. �25�, that just describes the simple additive superposition
of two contributions, shear-induced rigidity �second term�
and twist rigidity of the individual filaments �first term�. In
the continuum limit N→�, the latter contribution can natu-
rally be neglected as it only grows with N as compared to the
N2 increase in the shear-induced rigidity.

Now, we allow for finite axial displacements uk. This is
commonly referred to as cross-sectional warping; under twist
deformations, the bundle cross-sections do not stay plane but
deform and acquire a curvature. Just as in the case of the
bending rigidity, the exact solution for the twist rigidity only
differs little from the foregoing simplified analysis. Some
details about the derivation are presented in Appendix A 2.
The resulting axial displacements uk can be found in Fig. 11
The classic solution of Saint-Venant �29� is approached
closer and closer for increasing the shear-stiffness k�.

IV. MICROTUBULE ARCHITECTURE

In this section, we want to turn our attention to the case of
microtubules, which we model as bundles with filaments ar-
ranged on the surface of a cylinder. For the time being we
assume that in the ground state the microtubule is untwisted
such that the N protofilaments are oriented along the cylinder
axis. This assumption is in fact only valid for microtubules
with N=13 protofilaments �52,53�. This class, nevertheless,
seems to be the most frequent in in vitro polymerization
experiments.

There is an ongoing debate in the literature about the de-
pendence of microtubule bending rigidity on length
�37,38,54–59�. Early buckling experiments indicated a
length-dependence �54�, while an improved version of the
same experiments later gave a negative result �55�. Brangw-
ynne et al. �56� performed a mode analysis of microtubule
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FIG. 10. �Color online� Comparison of transverse response
function ����� �top figure� with longitudinal response function
����� �bottom figure� for a bundle of N=20 filaments �in units of
N�b /L3 and assuming LkBT /N�b=1�. Frequencies are plotted in
units of �L4 /N�b. The different curves correspond to different val-
ues of � /L. The two asymptotic scaling regimes with �−3/4 corre-
spond to the decoupled �top curve� and fully coupled regime �bot-
tom curve�, respectively. The intermediate �−1/2 is sharper in ��

than in �� even though the latter function shows overall a stronger
variation with frequency.
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FIG. 11. �Color online� Cross-sectional warping uk �k
=−M +1, . . . ,M, corresponding to one row of the rectangular array�
for different nondimensional crosslink shear-stiffness �
=k�L2 /ks�

2 �decreasing � from top to bottom�. The classic solution
for a beam �dashed line� is approached as k�→�. In the opposite
limit, k�→0, there is no warping and u�0, as filaments remain
uncoupled in this limit.
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contours. Their data is compatible with a length-dependent
bending rigidity but the authors vote for a cautious interpre-
tation of the results in view of the close proximity to the
noise level. Recently, experiments by Pampaloni et al. �38�
measured the transverse fluctuations of grafted microtubules
to establish an increasing persistence-length for microtubule
lengths up to L
23 �m. Using a high-precision tracer tech-
nique, Taute et al. �57� analyzed shorter microtubules and
found the persistence length to level off at lp

min�580 �m for
lengths shorter than L�5 �m. Similar values have been ob-
tained in Ref. �58� �lp

min=90 �m� and in Ref. �59� �lp
min

=240 �m� and explained with the help of the WLB model.
On short length scales �in the decoupled regime�, the effec-
tive bending rigidity is constant because it reflects the stiff-
ness of the individual protofilaments. In contrast, Kis et al.
�37� found a decreasing bending stiffness even for microtu-
bule sections as short as several hundred nanometers.

While the discussion about these partially conflicting
measurements is ongoing, we would like to point out that
different techniques do not necessarily have to come to the
same conclusion, once the idea of the bending rigidity as a
fundamental material parameter is given up. In the context of
the WLB model, the fundamental quantity is a mode-
dependent bending rigidity. As discussed in Sec. III B, any
dependence on bundle length is a “secondary” effect that will
depend on the observable under consideration.

By using the same procedure as in the case of the rectan-
gular bundle, we find for the microtubular bending rigidity

�B�n� = N�b�1 + 
 8�̂b

sin−2��/N�
+ �qn��2�−1� , �26�

where the relevant length scale � is now defined as �
=��b� /k�b2. Note that this expression results in the bending
stiffness in the fully coupled regime �where the microtubule
behaves as a simple beam� to scale as �
N3, in contrast to
bundles with a homogeneous cross-section �as the one dis-
cussed before�, where �
N2.

With Eq. �26�, direct comparison with experimental data
can be made. In particular, the ratio of maximal to minimal
bending rigidity can most easily be determined, r=1
+sin−2�� /N� /8�̂b=1+2 /sin2�� /N�. For the latter equality,
we assumed the protofilament to have a circular cross-section
��̂b=1 /16�. For microtubules with N=13 protofilaments, this
results in a universal ratio r�35.

In this way, using the range of values lp
min

�0.1, . . . ,0.6 mm �which we assume to represent the
protofilament stiffness� one can estimate the maximal persis-
tence length of long microtubules to be in the range lp

max

�3.5, . . . ,21 mm. Compared with experiments �38,60,61�,
these values seem to be too large. Given the large error bars
in any of the mentioned experiments, this calculation may,
nevertheless, be acceptable. Furthermore, as we will discuss
below, microtubule helicity can provide a mechanism to re-
duce the apparent persistence length by reducing the effect of
shear-induced coupling. For given microtubule length, the
persistence length is then predicted to decrease with increas-
ing helicity—thus improving the comparison with experi-
ment.

Finally, let’s turn to the case of pure twist deformations.
Due to the symmetry of the circular cross-section, no warp-
ing is possible. We find for the microtubule twist rigidity,
similar to Eq. �25�,

�T ª �t�1 +
tan−2��/N�

4

�t

b
�−2� , �27�

where �tª
��t� /k�b2.

V. PRETWISTED BUNDLES

In the previous sections, we have restricted our attention
to nonhelical bundles and assumed that in the ground state,
the filaments point along the bundle axis. As a final applica-
tion of our model, we will here discuss the question of he-
licity, or pretwist, and its influence on bundle mechanics.
This aspect is important not only for some types of microtu-
bules but also for F-actin bundles and is reflected in the role
that helicity plays in providing an explanation for the exis-
tence of a �thermodynamically� preferred bundle size
�18,30,31�.

The discussion of pretwisted bundles proceeds in two
steps. We first assume the bundle to form with all filaments
straight. Starting from this reference state crosslink binding
may add a driving force for twisting the bundle if the straight
state does not allow for optimal accessibility of the crosslink
binding sites. Another effect may be the helicity of the fila-
ments themselves that favor a twisted bundle over an un-
twisted one. The question of how a straight bundle is driven
into a twisted state is dealt with in great detail in Refs.
�30,31�. Here, we are more interested in the mechanical
properties of such a twisted bundle, as compared to an un-
twisted one. Without elaborating on the precise mechanism
that leads to pretwisted bundles, we therefore incorporate
bundle pretwist simply by substituting the generalized twist-
curvature �3 by �3−�0. In doing so, the new energetic
ground state is at �1=�2=0 and �3=�0. To obtain the ef-
fective bending rigidity we linearize the curvatures around
this ground state, as performed in Eq. �5�.

Inserting this result into the shear deformation, Eq. �4�,
one finds terms like b�cos��0�
�ds, which depend nonlin-
early on arc length s. Thus, a transformation to Fourier-space
is no longer helpful as different modes would remain
coupled. We therefore resort to an alternative approach, and
determine the effective bending rigidity by numerical inte-
gration of the mechanical equilibrium equations in real
space, �H /�
=0. Specifically, we determine the end deflec-
tion y�L� of a bundle of four filaments under a point force F
at the distal end �s=L�, given clamped boundary conditions
at the proximal end �s=0�. The effective bending rigidity is
then obtained from the expression, �eff=FL3 /12y�L�, and
displayed in Fig. 12 as a function of the crosslink shear stiff-
ness, k�, and a series of values for the pretwist, �0. For
simplicity, we have assumed the filaments to be inextensible,
ks→�, and thus restricted ourselves to the decoupled and the
intermediate regimes.

For increasing pretwist, the apparent stiffness decreases
and asymptotically approaches the value without shear stiff-
ness. Thus, in pretwisted, helical bundles, the crosslinks only
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have a limited ability to mechanically couple the different
filaments together. The higher the twist, the more the fila-
ments act as if they were independent �24�. The reason for
this behavior is that in pretwisted bundles, the filaments ex-
change their place and those that start on the top of the
bundle soon are on the bottom. Thus, crosslink sites that
would stay behind and lead to large shear displacements in
untwisted bundles, can now catch up to make the effective
shear deformation smaller.

VI. CONCLUSIONS AND OUTLOOK

We have presented a detailed study of the elastic and dy-
namic properties of bundles of semiflexible filaments
�WLB�. It is found that a competition between the elastic
properties of the filaments and those of the crosslinks leads
to renormalized effective bend and twist rigidities that can
become mode-number dependent. The strength and character
of this dependence varies with bundle architecture, such
as the arrangement of filaments in the cross section and
pretwist.

Two paradigmatic cases of bundle architecture have been
discussed �see Fig. 2�: the first assumes filaments to be ar-
ranged homogeneously throughout the cross section, for ex-
ample on a square or triangular lattice. This geometry is
particularly relevant for F-actin bundles. The second archi-
tecture has the filaments arranged on the surface of a cylinder
as is the case for microtubules. For all bundle architectures,
the bending rigidity depends on mode number qn as �B�n�

k�qn

−2. This is the shear-dominated regime, as the bending
rigidity is proportional to the shear stiffness, k�, of the
crosslinks. It is in this parameter regime that the bundle be-
haves qualitatively different than either a homogeneous
beam �obtained in the “fully coupled” limit� or an assembly
of “decoupled” filaments. This state dependence has impor-
tant implications for the physiological bending, buckling,
and potential entropic stretching behavior of cytoskeletal
bundles, some of which are discussed in Ref. �11�. Each
architecture has its own universal ratio of maximal to mini-
mal bending rigidity, independent of the specific type of

crosslink-induced filament coupling. For microtubules �with-
out pretwist�, we find the ratio r=1+2 /sin2�� /N�, which is
in reasonable agreement with the available experimental
data.

An important factor in determining the strength of
crosslink-induced filament coupling is the pretwist �helicity�
of the bundle. Numerical computation shows that the effec-
tive bending rigidity decreases with increasing the pretwist.
This has interesting consequences for microtubules, where
the amount of pretwist depends on the number of protofila-
ments, N. Different microtubule types are therefore predicted
to have different variations in their effective bending rigidity.
These predictions could be tested in experiments that are
able to select the microtubule type and measure their bending
rigidity independently.

We have discussed several further observables, static and
dynamic, that could be relevant to experiments. We have
shown that the concept of the persistence length becomes
ambiguous and depends on the observable used. The usual
definition via the tangent-tangent correlation function is
shown to lead to a persistence length that depends on the
scale of observation. Further observables that are affected by
the mode-dependent bending rigidity are the force-extension
relation or the buckling force �12�. Interestingly, in the inter-
mediate regime the latter is constant and independent of
bundle length.

The dynamic properties of bundles are characterized by a
complex crossover scenario which is in one-to-one corre-
spondence with the three regimes of decoupled, intermediate
and fully coupled bending. While decoupled and fully
coupled bending display the usual t3/4 in the correlation func-
tion, it is shown that the shear-coupling leads to an interme-
diate asymptotic regime, where the correlations only grow as
t1/2. The response functions for longitudinal and transverse
forces also reflect these different regimes. In contrast to the
WLC, they are not just proportional to each other but show
distinct frequency dependences. These findings may be rel-
evant for microrheological experiments, with imbedded bead
particles directly coupling to the transverse bundle fluctua-
tions.

Possibilities for future studies may be to look into the
effects of filament fracture or lattice defects. The elastic en-
ergy represents a harmonic approximation which should be
extended to include nonlinear effects. Especially for micro-
tubules, one may expect these to play an important role in
bundle mechanics. For example, it may be important to con-
sider that protofilaments in their unstressed state are not
straight but bend radially outwards. Additional complications
could also arise from the fact that some microtubules are not
transversely isotropic as we have assumed here, but have a
“seam,” where protofilaments are offset relative to their
neighbors. Failure modes under axial compressive forces
have been discussed in a model for microtubules that starts
from a transversly isotropic shell theory �62�. It would be
interesting to compare the results of a generalized WLB
model—to include cross-sectional deformations—with their
results for the critical buckling forces. One mode of failure,
the ovalization of the microtubule cross section �Brazier ef-
fect� may for example be taken into account by adjusting the
cross-sectional coordinates with the help of an “ovalization

1
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8

16

1 10 100

κ e
ff

kx

ω0=0.25

ω0=3

FIG. 12. �Color online� Effective bending stiffness �in units of
N�b� as a function of shear-stiffness k� �in units of �b� /b2L2� of a
bundle of four filaments under a tip force F. The bending stiffness is
calculated from the determined end-deflection y�L� by �eff

=FL3 /12y�L�. The full curves are for finite pretwist �0L /�
= �0.25,0.5,1 ,2 ,3� �increasing �0 from top to bottom�, while the
dashed curves represent the limiting cases of zero and infinite
pretwist, respectively.
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parameter.” This would then have to be determined together
with the other degrees of freedom from the equilibrium equa-
tions.

ACKNOWLEDGMENTS

The authors acknowledge fruitful discussions with An-
dreas Bausch, Mark Bathe, Mireille Claessens, and Karen
Winkler. C.H. acknowledges the Feodor-Lynen program of
the Humboldt foundation, the Marie-Curie Eurosim, and the
ANR Syscom program for financial support. E.F. is grateful
to the Deutsche Forschungsgemeinschaft for support through
Grant No. Fr 850/8-1, and to the German Excellence Initia-
tive via the NIM program. We also acknowledge the hospi-
tality of the Aspen Center for Physics where part of this work
was completed.

APPENDIX A: EXACT SOLUTION FOR BENDING
AND TWIST RIGIDITIES

In this appendix, the effective bending and twist rigidities
are calculated exactly from the WLB Hamiltonian, Eqs.
�1�–�4�. To this end, the u variables have to be integrated
over to define an effective WLC Hamiltonian.

First, we have to show that there are no terms in the shear
Hamiltonian, Eq. �3� that would couple the different Euler
angles �, 
, �. To this end, we use Eq. �4� in Eq. �3� and
specialize to a square cross-section. The resulting shear
Hamiltonian can then be written as

Hshear =
k�

2�
�

s
	
ij

��uij − ui+1,j − b��zj + b
�2

+ �uij − ui,j+1 + b��yi − b��2� , �A1�

where yi=b · �i+ 1
2 � and zj =b · �j+ 1

2 �. Here, each filament is
labeled by the pair of indices �i , j�, which denotes its location
in the ith row and the jth column of the square cross-section.
The only terms that couple the different Euler angles are
b2��
	ijzj and b2���	ijyi. These identically vanish because
of the symmetric arrangement of the filaments, 	 jzj =0 and
	iyi=0.

The remaining calculations are performed in Fourier
space. For the transformation we use cos-modes, which are
appropriate for bundles with pinned boundary conditions.
Writing the u-dependent part of the Hamiltonian in matrix
form �H= 1

2	klukAklul+	lulbl, one needs the following for-
mula valid for a Gaussian integral:

� �
k

duk exp
−
1

2	
kl

ukAklul − 	
l

ulbl�
= exp
−

1

2	
kl

ūkAklūl − 	
l

ūlbl� , �A2�

where ū is obtained from

���H�/�uk = 0. �A3�

Having found the solution ū, we can finally bring Eq. �A2� in
the form of Eq. �8� to read off the effective bend and twist
rigidities.

1. Bending

Here, we solve Eq. �A3� for the case of bending of the
square bundle. It proves useful to introduce the dimension-
less crosslink shear-stiffness �=k�L2 /ks�

2. We can then
write Eq. �A3� as

�qL�2uk − ��2uk = 0. �A4�

We also defined the discrete second derivative �2uk=uk+1
−2uk+uk−1. Note, that we are working in Fourier space so all
quantities should carry an additional subscript relating to the
mode-number n. As different modes do not mix, there is no
harm in dropping it for the moment.

At the outer edges of the bundle k=−M, M −1, we find

uM−1 − uM−2 =
�qL�2

�
uM−2 + b� , �A5�

and

u−M+1 − u−M =
�qL�2

�
u−M + b� . �A6�

The Eq. �A4� is solved by uk=Am+
k +Bm−

k , where m


= 1
2 �x
�x2−4�, and we have defined x=2+ �qL�2 /�. The

constants A, B are adjusted to fulfill the boundary conditions
Eqs. �A5� and �A6�. This solution for the axial stretching
variable uk is plotted in Fig. 7.

To obtain the approximated bending rigidity of Eq. �10�,
one first has to insert the assumption uk=�u · �k+1 /2� into
the Hamiltonian and then minimize with respect to the single
variable �u.

This way, one finds

�u =
− b�

1 +
�M

6�
��M + 1�

, �A7�

which has to be reinserted into the Hamiltonian to yield Eq.
�10�.

2. Twist

In the case of pure twisting, the same analysis can be done
to calculate the effective twist rigidity. The difference to the
bending case is that now the full two-dimensional boundary
value problem has to be solved. The equation determining
the axial stretching uij of the filament indexed by �i , j� is

�qL�2uij − ��uij = 0, �A8�

where the operator �=�i
2+� j

2 is the two-dimensional version
of the discrete Laplacian encountered above. The finite dif-
ference operator �i is defined as �i

2uij =ui+1j +ui−1j −2uij. As
for the case of pure bending, here, the twist variable � enters
only via the boundary terms.

The classic theory to calculate the twist rigidity of beams
has been given by Saint-Venant �29�. In this approach, the
axial displacements are found by solving Laplace’s equation
�u�y ,z�=0 on the appropriate domain of the cross-section.
We see that Eq. �A8� reduces to the Laplace equation in the
limit �
k�→�, which is the reason why in Fig. 11 the
continuum limit is approached with increasing shear stiffness

HEUSSINGER, SCHÜLLER, AND FREY PHYSICAL REVIEW E 81, 021904 �2010�

021904-12



at fixed bundle size. The remaining difference stemming
from the discretization into N filaments represents only a
small effect. In the Saint-Venant theory, it is well-known that
for rectangular domains, two types of solutions appear, de-
pending on the aspect-ratio of the cross-section. We illustrate
the different symmetry properties of these solutions in Fig.
13.

APPENDIX B: RELATION BETWEEN THE Ω�,k OF
FILAMENT k AND THE Ω� OF THE CENTRAL LINE

This appendix gives some details on the description of the
bundle kinematic degrees of freedom. The goal is to relate
the generalized curvatures ��,k of filament k, to the �� of
the bundle central line. That these need not necessarily coin-
cide is best illustrated by discussing an example. If the cen-
tral line is twisted but not bent, �3 remains as the only non-
vanishing component of the curvature vector. The filaments
themselves, however, twist and bend as they trace out a he-
lical path with radius R. Their bending energy is � fL�R�3

2�2,
of fourth order in �3.

As a second example, consider the bending of the central
line, �1=1 /R, where R is the radius of curvature. The fila-
ments that lie at a distance b away from the central line
naturally have a different radius of curvature, R
b, and thus
a different bending energy. The correction is again of higher
order and scales as b2�1

4. It turns out, that all effects like the
two just mentioned only contribute to higher order. To lowest
order we will find that ��=��,k.

We define the vector rk�s�=r0�s�+Rk�s� to point to fila-
ment k at arclength position s. The central line of the bundle
is thereby given by r0�s�. The position of each filament in the
cross section is parametrized by Rk�s�=Akd1�s�+Bkd2�s�,
where Ak and Bk are constants independent of arclength s and
deformation of the bundle. This, in particular, implies that in

the reference state the filaments are always straight and un-
twisted. We also need the derivative of Rk with respect to s,

Rk� = �Bk�1 − Ak�2�t + �3Rk
�, �B1�

where we have used the Frenet-Seret equations and defined
Rk

�=Bkd1�s�−Akd2�s�. With this the tangent to filament k is
given by

tk =
1

N
��1 + Bk�1 − Ak�2�t + �3Rk

�� , �B2�

with an appropriate normalization factor, N. One finds, that
the filament tangent is parallel to the central line only if the
twist vanishes, �3=0. For finite bundle twist, the filament
tangent is rotated around the vector Rk relative to the central
tangent t. The magnitude of the rotation is �3Rk and depends
on the distance Rk= �Rk�= �Rk

�� of the filament to the central
line.

In order to derive expressions for the remaining two unit
vectors d1,k and d2,k, let us assume, for the time being, that
no other rotation is allowed that may reorient the local frame
of filament k relative to the central frame. With this assump-
tion, filaments are not allowed to twist relative to their neigh-
bors as this would correspond to a rotation around tk. In the
bundles, we consider, this internal twist motion can safely be
neglected as crosslinks provide for permanent rigid interfila-
ment connections. As explained below, these internal twist
modes may nevertheless be important at the time of bundle
formation.

The local frame can then be related to the central frame
by

d1,k = d1 − Bk�3 sin �t + O�bk�3�2, �B3�

d2,k = d2 + Ak�3 cos �t + O�bk�3�2. �B4�
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FIG. 13. �Color online� Illustration of the two types of solution obtained for the stretching uij of filament �i , j�. The symbolds �plus/
minus� indicate the sign of u in the respective region. Left: square cross-section of 40�40 filaments. Right: 30�40 filaments.
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One can now express the generalized curvatures of the fila-
ments in terms of the �� of the central line. For simplicity,
we here consider the case of pure twisting where �1=�2
=0. One then finds

�3,k � ��sk
d1,k� · d2,k = �3 − �3�3�AkBk = �3
1 + O
b2�3

L
��

�B5�

Note, that the difference in length between the central line
and the individual filaments should be taken into account in
the parametrization in terms of arclength, however, only con-
tributes to higher orders. More formally, �s /�sk=1+O�b��.

In addition to twist, filaments also bend

�1,k � ��sk
d2,k� · d3,k, �B6�

=�3�Ak + �3
2Bk, �B7�

and

�2,k � ��sk
d1,k� · d3,k, �B8�

=− �3�Bk + �3
2Ak, �B9�

which reduces to the well-known expression for the curva-
ture of a helix if �3�=0.

Finally, let us comment on what would happen if we did
allow the filaments to twist individually, and relative to their
neighbors. This filament twist can be described by an addi-
tional rotation, �k�s� of the local unit vectors, d1,k and d2,k,
around the tangent tk.

The new vectors are then given by

e1,k = cos �kd1,k + sin �kd2,k, �B10�

e2,k = − sin �kd1,k + cos �kd2,k, �B11�

and the bundle twist, �3, can be calculated as before

�3,k = �3 + �k�. �B12�

The twist energy should thus be written as

Htwist =
�t

2
�

s
	

k

��3 + �k��
2

=
N�t

2
�

s

��3 + �̄��2 + N��̄�2 − �̄�2� , �B13�

where we defined the moments of the filament twist distri-

bution �̄�r=	k�k�
r /N.

As explained above, in crosslinked bundles this internal
twist can be assumed to be quenched at the time of bundle

formation. In this case, we need not treat the �k as dynamical
variables for the discussion of bundle deformation. A finite

�̄� nevertheless gives the bundle a certain helicity and im-
poses pretwist, as discussed in Sec. V.

APPENDIX C: DERIVATION OF SHEAR DEFORMATION

To calculate the geometric part � of the shear deforma-
tion, an expression for the arclength mismatch between the
two points on the filament pair is needed. The general ex-
pression is

�lk = �s + �s

�t + Rl�� − �s

�t + Rk�� , �C1�

where the first contribution, �s, derives from the possibility
that the two points do not correspond to the same point, s, on
the bundle central line.

By using Eqs. �B1� and �B2� and expanding, one finds

� = �s + �
0

s �blk� · t −
1

2
�Rl�

2 − Rk�
2�� , �C2�

where we defined blk=Rl−Rk pointing from filament k to
filament l. As in the formulation of H0, only the leading order
terms have been accounted for. The �blk� · t� term only con-
tains bending deformations. This may be seen by setting t
= êx=const appropriate for a pure twisting of the central line.
Then �lk=blk · êx=0 as the vector blk lies within the cross-
section, that is perpendicular to the tangent.

The last term corresponds to the arclength-difference ac-
quired between two filaments at different distance to the cen-
tral line �Rk�Rl�. It is clear that the filament farther out has
to go a longer distance, so its crosslinking sites will stay
back in comparison to that of its neighbor closer in the center
of the bundle. However, twist also produces shear deforma-
tion between filaments, which lie at equal distance to the
central line �Rl=Rk�. This is embodied in the extra term �s,
which we treat now �also see Fig. 5�. To derive an expression
for the shear displacement in this case, assume that the two
filaments lie, separated by a distance blk= �blk�, on the surface
of a cylinder of radius R. Twisting the cylinder makes the
filaments wind around it, each taking an angle �3R to the
cylinder axis. The shear deformation then simply is �s
=�3Rblk. For arbitrary orientation of the filament pair, we
have to write �s= tlk ·blk, where tlk is the tangent to the mid-
line between the filament pair. In agreement to what has been
said above, this mechanism does not contribute to the shear
displacement when the filament pair �l ,k� is connected by
crosslinks in radial direction. In this case, tlk�blk, and the
shear deformation �s=0.
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