24 research outputs found

    Spectral structure and decompositions of optical states, and their applications

    Get PDF
    We discuss the spectral structure and decomposition of multi-photon states. Ordinarily `multi-photon states' and `Fock states' are regarded as synonymous. However, when the spectral degrees of freedom are included this is not the case, and the class of `multi-photon' states is much broader than the class of `Fock' states. We discuss the criteria for a state to be considered a Fock state. We then address the decomposition of general multi-photon states into bases of orthogonal eigenmodes, building on existing multi-mode theory, and introduce an occupation number representation that provides an elegant description of such states that in many situations simplifies calculations. Finally we apply this technique to several example situations, which are highly relevant for state of the art experiments. These include Hong-Ou-Mandel interference, spectral filtering, finite bandwidth photo-detection, homodyne detection and the conditional preparation of Schr\"odinger Kitten and Fock states. Our techniques allow for very simple descriptions of each of these examples.Comment: 12 page

    A generator for unique quantum random numbers based on vacuum states

    No full text
    Random numbers are a valuable component in diverse applications that range from simulations(1) over gambling to cryptography(2,3). The quest for true randomness in these applications has engendered a large variety of different proposals for producing random numbers based on the foundational unpredictability of quantum mechanics(4-11). However, most approaches do not consider that a potential adversary could have knowledge about the generated numbers, so the numbers are not verifiably random and unique(12-15). Here we present a simple experimental setup based on homodyne measurements that uses the purity of a continuous-variable quantum vacuum state to generate unique random numbers. We use the intrinsic randomness in measuring the quadratures of a mode in the lowest energy vacuum state, which cannot be correlated to any other state. The simplicity of our source, combined with its verifiably unique randomness, are important attributes for achieving high-reliability, high-speed and low-cost quantum random number generators
    corecore