279 research outputs found

    Quantum Effects in the Mechanical Properties of Suspended Nanomechanical Systems

    Full text link
    We explore the quantum aspects of an elastic bar supported at both ends and subject to compression. If strain rather than stress is held fixed, the system remains stable beyond the buckling instability, supporting two potential minima. The classical equilibrium transverse displacement is analogous to a Ginsburg-Landau order parameter, with strain playing the role of temperature. We calculate the quantum fluctuations about the classical value as a function of strain. Excitation energies and quantum fluctuation amplitudes are compared for silicon beams and carbon nanotubes.Comment: RevTeX4. 5 pages, 3 eps figures. Submitted to Physical Review Letter

    Intrinsic thermal vibrations of suspended doubly clamped single-wall carbon nanotubes

    Full text link
    We report the observation of thermally driven mechanical vibrations of suspended doubly clamped carbon nanotubes, grown by chemical vapor deposition (CVD). Several experimental procedures are used to suspend carbon nanotubes. The vibration is observed as a blurring in images taken with a scanning electron microscope. The measured vibration amplitudes are compared with a model based on linear continuum mechanics.Comment: pdf including figures, see: http://www.unibas.ch/phys-meso/Research/Papers/2003/NT-Thermal-Vibrations.pd

    Quasielastic 12C(e,e'p) Reaction at High Momentum Transfer

    Full text link
    We measured the 12C(e,e'p) cross section as a function of missing energy in parallel kinematics for (q,w) = (970 MeV/c, 330 MeV) and (990 MeV/c, 475 MeV). At w=475 MeV, at the maximum of the quasielastic peak, there is a large continuum (E_m > 50 MeV) cross section extending out to the deepest missing energy measured, amounting to almost 50% of the measured cross section. The ratio of data to DWIA calculation is 0.4 for both the p- and s-shells. At w=330 MeV, well below the maximum of the quasielastic peak, the continuum cross section is much smaller and the ratio of data to DWIA calculation is 0.85 for the p-shell and 1.0 for the s-shell. We infer that one or more mechanisms that increase with ω\omega transform some of the single-nucleon-knockout into multinucleon knockout, decreasing the valence knockout cross section and increasing the continuum cross section.Comment: 14 pages, 7 figures, Revtex (multicol, prc and aps styles), to appear in Phys Rev

    Realistic Model of the Nucleon Spectral Function in Few- and Many- Nucleon Systems

    Get PDF
    By analysing the high momentum features of the nucleon momentum distribution in light and complex nuclei, it is argued that the basic two-nucleon configurations generating the structure of the nucleon Spectral Function at high values of the nucleon momentum and removal energy, can be properly described by a factorised ansatz for the nuclear wave function, which leads to a nucleon Spectral Function in the form of a convolution integral involving the momentum distributions describing the relative and center-of-mass motion of a correlated nucleon-nucleon pair embedded in the medium. The Spectral Functions of 3He^3He and infinite nuclear matter resulting from the convolution formula and from many-body calculations are compared, and a very good agreement in a wide range of values of nucleon momentum and removal energy is found. Applications of the model to the analysis of inclusive and exclusive processes are presented, illustrating those features of the cross section which are sensitive to that part of the Spectral Function which is governed by short-range and tensor nucleon-nucleon correlations.Comment: 40 pages Latex , 16 ps figures available from the above e-mail address or from [email protected]

    Recoil Polarization for Delta Excitation in Pion Electroproduction

    Get PDF
    We measured angular distributions of recoil-polarization response functions for neutral pion electroproduction for W=1.23 GeV at Q^2=1.0 (GeV/c)^2, obtaining 14 separated response functions plus 2 Rosenbluth combinations; of these, 12 have been observed for the first time. Dynamical models do not describe quantities governed by imaginary parts of interference products well, indicating the need for adjusting magnitudes and phases for nonresonant amplitudes. We performed a nearly model-independent multipole analysis and obtained values for Re(S1+/M1+)=-(6.84+/-0.15)% and Re(E1+/M1+)=-(2.91+/-0.19)% that are distinctly different from those from the traditional Legendre analysis based upon M1+ dominance and sp truncation.Comment: 5 pages, 2 figures, for PR

    Measurement of the recoil polarization in the p (\vec e, e' \vec p) pi^0 reaction at the \Delta(1232) resonance

    Full text link
    The recoil proton polarization has been measured in the p (\vec e,e'\vec p) pi^0 reaction in parallel kinematics around W = 1232 MeV, Q^2 = 0.121 (GeV/c)^2 and epsilon = 0.718 using the polarized c.w. electron beam of the Mainz Microtron. Due to the spin precession in a magnetic spectrometer, all three proton polarization components P_x/P_e = (-11.4 \pm 1.3 \pm 1.4) %, P_y = (-43.1 \pm 1.3 \pm 2.2) %, and P_z/P_e = (56.2 \pm 1.5 \pm 2.6) % could be measured simultaneously. The Coulomb quadrupole to magnetic dipole ratio CMR = (-6.4\pm 0.7_{stat}\pm 0.8_{syst}) % was determined from P_x in the framework of the Mainz Unitary Isobar Model. The consistency among the reduced polarizations and the extraction of the ratio of longitudinal to transverse response is discussed.Comment: 5 pages LaTeX, 1 table, 2 eps figure

    The Quasielastic 3He(e,e'p)d Reaction at Q^2 = 1.5 GeV^2 for Recoil Momenta up to 1 GeV/c

    Full text link
    We have studied the quasielastic 3He(e,e'p)d reaction in perpendicular coplanar kinematics, with the energy and momentum transferred by the electron fixed at 840 MeV and 1502 MeV/c, respectively. The 3He(e,e'p)d cross section was measured for missing momenta up to 1000 MeV/c, while the A_TL asymmetry was extracted for missing momenta up to 660 MeV/c. For missing momenta up to 150 MeV/c, the measured cross section is described well by calculations that use a variational ground-state wave function of the 3He nucleus derived from a potential that includes three-body forces. For missing momenta from 150 to 750 MeV/c, strong final-state interaction effects are observed. Near 1000 MeV/c, the experimental cross section is more than an order of magnitude larger than predicted by available theories. The A_TL asymmetry displays characteristic features of broken factorization, and is described reasonably well by available models.Comment: 5 pages, 3 figures, submitted to Physical Review Letters, v3: changed conten

    Measurement of the 3He(e,e'p)pn reaction at high missing energies and momenta

    Full text link
    Results of the Jefferson Lab Hall A quasielastic 3He(e,e'p)pn measurements are presented. These measurements were performed at fixed transferred momentum and energy, q = 1502 MeV/c and omega = 840 MeV, respectively, for missing momenta p_m up to 1 GeV/c and missing energies in the continuum region, up to pion threshold; this kinematic coverage is much more extensive than that of any previous experiment. The cross section data are presented along with the effective momentum density distribution and compared to theoretical models.Comment: 5 pages, 3 figures, updated to reflect published paper: minor text changes from previous version along with updated and added reference

    Recoil Polarization Measurements for Neutral Pion Electroproduction at Q^2=1 (GeV/c)^2 Near the Delta Resonance

    Get PDF
    We measured angular distributions of differential cross section, beam analyzing power, and recoil polarization for neutral pion electroproduction at Q^2 = 1.0 (GeV/c)^2 in 10 bins of W across the Delta resonance. A total of 16 independent response functions were extracted, of which 12 were observed for the first time. Comparisons with recent model calculations show that response functions governed by real parts of interference products are determined relatively well near 1.232 GeV, but variations among models is large for response functions governed by imaginary parts and for both increases rapidly with W. We performed a nearly model-independent multipole analysis that adjusts complex multipoles with high partial waves constrained by baseline models. Parabolic fits to the W dependence of the multipole analysis around the Delta mass gives values for SMR = (-6.61 +/- 0.18)% and EMR = (-2.87 +/- 0.19)% that are distinctly larger than those from Legendre analysis of the same data. Similarly, the multipole analysis gives Re(S0+/M1+) = (+7.1 +/- 0.8)% at W=1.232 GeV, consistent with recent models, while the traditional Legendre analysis gives the opposite sign because its truncation errors are quite severe. Finally, using a unitary isobar model (UIM), we find that excitation of the Roper resonance is dominantly longitudinal with S1/2 = (0.05 +/- 0.01) GeV^(-1/2) at Q^2=1. The ReS0+ and ReE0+ multipoles favor pseudovector coupling over pseudoscalar coupling or a recently proposed mixed-coupling scheme, but the UIM does not reproduce the imaginary parts of 0+ multipoles well.Comment: 60 pages, 54 figure

    Nuclear Transparency to Intermediate-Energy Protons

    Get PDF
    Nuclear transparency in the (e,e'p) reaction for 135 < Tp < 800 MeV is investigated using the distorted wave approximation. Calculations using density-dependent effective interactions are compared with phenomenological optical potentials. Nuclear transparency is well correlated with proton absorption and neutron total cross sections. For Tp < 300 MeV there is considerable sensitivity to the choice of optical model, with the empirical effective interaction providing the best agreement with transparency data. For Tp > 300 MeV there is much less difference between optical models, but the calculations substantially underpredict transparency data and the discrepancy increases with A. The differences between Glauber and optical model calculations are related to their respective definitions of the semi-inclusive cross section. By using a more inclusive summation over final states the Glauber model emphasizes nucleon-nucleon inelasticity, whereas with a more restrictive summation the optical model emphasizes nucleon-nucleus inelasticity; experimental definitions of the semi-inclusive cross section lie between these extremes.Comment: uuencoded gz-compressed tar file containing revtex and bbl files and 5 postscript figures, totalling 31 pages. Uses psfi
    • …
    corecore