Abstract

Nuclear transparency in the (e,e'p) reaction for 135 < Tp < 800 MeV is investigated using the distorted wave approximation. Calculations using density-dependent effective interactions are compared with phenomenological optical potentials. Nuclear transparency is well correlated with proton absorption and neutron total cross sections. For Tp < 300 MeV there is considerable sensitivity to the choice of optical model, with the empirical effective interaction providing the best agreement with transparency data. For Tp > 300 MeV there is much less difference between optical models, but the calculations substantially underpredict transparency data and the discrepancy increases with A. The differences between Glauber and optical model calculations are related to their respective definitions of the semi-inclusive cross section. By using a more inclusive summation over final states the Glauber model emphasizes nucleon-nucleon inelasticity, whereas with a more restrictive summation the optical model emphasizes nucleon-nucleus inelasticity; experimental definitions of the semi-inclusive cross section lie between these extremes.Comment: uuencoded gz-compressed tar file containing revtex and bbl files and 5 postscript figures, totalling 31 pages. Uses psfi

    Similar works