24 research outputs found

    Effect of the biobased polyols chemical structure on high performance thermoset polyurethane properties

    Get PDF
    The sustainability of the polymeric materials has become a fundamental challenge; therefore, the development of new biobased formulations has gained increasing interest. Thermoset polyurethanes (PURs) present high performance and are a competitive solution for structural composites. However, polyols used in the PUR synthesis are typically from petrochemical origin. Nowdays, a broad range of biobased polyols is available in the market, but there is not yet a specific formulation for high performance PURs composites. The aim of this work was to study the effect of biobased polyols' characteristics in the PUR processing and final properties. In addition, biobased polyol features to synthesize BIO-PURs suitable for structural applications were stablished. The viscosity and reactivity were studied by means of rheology and differential scanning calorimetry (DSC). Thermal and mechanical properties were studied through thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and flexural tests. The results obtained demonstrated the dramatic influence of polyols’ nature on BIO-PUR/PUR properties and their effect on the crosslink density. It was observed that using a high functionality and high hydroxyl index biobased polyol, it was possible to synthesize high performance BIO-PUR suitable for structural composites.We gratefully acknowledge the Basque Government for the financial support through the ELKARTEK 2021 (Project NEOMAT KK-2021/00059) program and in the frame of Grupos Consolidados (IT-1690-22). The authors also acknowledge the University of the Basque Country (UPV/EHU) in the frame of GIU18/216 Research Group and the Macrobehavior-Mesostructure-Nanotechnology SGIker unit

    Strategies, methods and tools for managing nanorisks in construction

    Get PDF
    This paper presents a general overview of the work carried out by European project SCAFFOLD (GA 280535) during its 30 months of life, with special emphasis on risk management component. The research conducted by SCAFFOLD is focused on the European construction sector and considers 5 types of nanomaterials (TiO2, SiO2, carbon nanofibres, cellulose nanofibers and nanoclays), 6 construction applications (Depollutant mortars, selfcompacting concretes, coatings, self-cleaning coatings, fire resistant panels and insulation materials) and 26 exposure scenarios, including lab, pilot and industrial scales. The document focuses on the structure, content and operation modes of the Risk Management Toolkit developed by the project to facilitate the implementation of "nano-management" in construction companies. The tool deploys and integrated approach OHSAS 18001 - ISO 31000 and is currently being validated on 5 industrial case studies.Research carried out by project SCAFFOLD was made possible thanks to funding from the European Commission, through the Seventh Framework Programme (GA 280535

    Quantification of the 2-Deoxyribonolactone and Nucleoside 5 '-Aldehyde Products of 2-Deoxyribose Oxidation in DNA and Cells by Isotope-Dilution Gas Chromatography Mass Spectrometry: Differential Effects of gamma-Radiation and Fe2+-EDTA

    Get PDF
    The oxidation of 2-deoxyribose in DNA has emerged as a critical determinant of the cellular toxicity of oxidative damage to DNA, with oxidation of each carbon producing a unique spectrum of electrophilic products. We have developed and validated an isotope-dilution gas chromatography-coupled mass spectrometry (GC−MS) method for the rigorous quantification of two major 2-deoxyribose oxidation products: the 2-deoxyribonolactone abasic site of 1′-oxidation and the nucleoside 5′-aldehyde of 5′-oxidation chemistry. The method entails elimination of these products as 5-methylene-2(5H)-furanone (5MF) and furfural, respectively, followed by derivatization with pentafluorophenylhydrazine (PFPH), addition of isotopically labeled PFPH derivatives as internal standards, extraction of the derivatives, and quantification by GC−MS analysis. The precision and accuracy of the method were validated with oligodeoxynucleotides containing the 2-deoxyribonolactone and nucleoside 5′-aldehyde lesions. Further, the well-defined 2-deoxyribose oxidation chemistry of the enediyne antibiotics, neocarzinostatin and calicheamicin γ1I, was exploited in control studies, with neocarzinostatin producing 10 2-deoxyribonolactone and 300 nucleoside 5′-aldehyde per 106 nt per μM in accord with its established minor 1′- and major 5′-oxidation chemistry. Calicheamicin unexpectedly caused 1′-oxidation at a low level of 10 2-deoxyribonolactone per 106 nt per μM in addition to the expected predominance of 5′-oxidation at 560 nucleoside 5′-aldehyde per 106 nt per μM. The two hydroxyl radical-mediated DNA oxidants, γ-radiation and Fe2+−EDTA, produced nucleoside 5′-aldehyde at a frequency of 57 per 106 nt per Gy (G-value 74 nmol/J) and 3.5 per 106 nt per μM, respectively, which amounted to 40% and 35%, respectively, of total 2-deoxyribose oxidation as measured by a plasmid nicking assay. However, γ-radiation and Fe2+−EDTA produced different proportions of 2-deoxyribonolactone at 7% and 24% of total 2-deoxyribose oxidation, respectively, with frequencies of 10 lesions per 106 nt per Gy (G-value, 13 nmol/J) and 2.4 lesions per 106 nt per μM. Studies in TK6 human lymphoblastoid cells, in which the analytical data were corrected for losses sustained during DNA isolation, revealed background levels of 2-deoxyribonolactone and nucleoside 5′-aldehyde of 9.7 and 73 lesions per 106 nt, respectively. γ-Irradiation of the cells caused increases of 0.045 and 0.22 lesions per 106 nt per Gy, respectively, which represents a 250-fold quenching effect of the cellular environment similar to that observed in previous studies. The proportions of the various 2-deoxyribose oxidation products generated by γ-radiation are similar for purified DNA and cells. These results are consistent with solvent exposure as a major determinant of hydroxyl radical reactivity with 2-deoxyribose in DNA, but the large differences between γ-radiation and Fe2+−EDTA suggest that factors other than hydroxyl radical reactivity govern DNA oxidation chemistry.National Institute of Environmental Health Sciences (ES002109)National Center for Research Resources (U.S.) (RR023783-01)National Center for Research Resources (U.S.) (RR017905-01)National Cancer Institute (U.S.) (CA103146

    Pattern formation outside of equilibrium

    Full text link

    The Complexity of Offshoring: A Comparative Study of Mexican Maquiladora Plants and Indian Outsourcing Offices from an Institutional-Prospect Theory Perspective

    No full text
    To improve our understanding of offshoring and how it is evolving, salient ideas from both institutional and prospect theories are utilized to build a more descriptive model of how decisions are made to (re)direct foreign investment into offshored activities. Careful examinations of the offshoring programs in India and Mexico reveal that they took different investment trajectories during the past decade that can be aptly explained by this integrative model. The primary information used to measure the population trends of offshoring firms in India and Mexico comes from proprietary data sources for each country that issue annual reports on the number of operators in their respective offshoring sectors, that is, services and manufacturing

    Induction of DNA double-strand breaks by zeocin in Chlamydomonas reinhardtii and the role of increased DNA double-strand breaks rejoining in the formation of an adaptive response

    No full text
    This study aimed to test the potential of the radiomimetic chemical zeocin to induce DNA double-strand breaks (DSB) and "adaptive response" (AR) in Chlamydomonas reinhardtii strain CW15 as a model system. The AR was measured as cell survival using a micro-colony assay, and by changes in rejoining of DSB DNA. The level of induced DSB was measured by constant field gel electrophoresis based on incorporation of cells into agarose blocks before cell lysis. This avoids the risk of accidental induction of DSB during the manipulation procedures. Our results showed that zeocin could induce DSB in C. reinhardtii strain CW15 in a linear dose-response fashion up to 100 mu g ml(-1) which marked the beginning of a plateau. The level of DSB induced by 100 mu g ml(-1) zeocin was similar to that induced by 250 Gy of gamma-ray irradiation. It was also found that, similar to gamma rays, zeocin could induce AR measured as DSB in C. reinhardtii CW15 and this AR involved acceleration of the rate of DSB rejoining, too. To our knowledge, this is the first demonstration that zeocin could induce AR in some low eukaryotes such as C. reinhardtii.</p
    corecore