13 research outputs found
Comprehending Isabelle/HOL's consistency
The proof assistant Isabelle/HOL is based on an extension of Higher-Order Logic (HOL) with ad hoc overloading of constants. It turns out that the interaction between the standard HOL type definitions and the Isabelle-specific ad hoc overloading is problematic for the logical consistency. In previous work, we have argued that standard HOL semantics is no longer appropriate for capturing this interaction, and have proved consistency using a nonstandard semantics. The use of an exotic semantics makes that proof hard to digest by the community. In this paper, we prove consistency by proof-theoretic means—following the healthy intuition of definitions as abbreviations, realized in HOLC, a logic that augments HOL with comprehension types. We hope that our new proof settles the Isabelle/HOL consistency problem once and for all. In addition, HOLC offers a framework for justifying the consistency of new deduction schemas that address practical user needs
A consistent foundation for Isabelle/HOL
The interactive theorem prover Isabelle/HOL is based on well understood Higher-Order Logic (HOL), which is widely believed to be consistent (and provably consistent in set theory by a standard semantic argument). However, Isabelle/HOL brings its own personal touch to HOL: overloaded constant definitions, used to achieve Haskell-like type classes in the user space. These features are a delight for the users, but unfortunately are not easy to get right as an extension of HOL—they have a history of inconsistent behavior. It has been an open question under which criteria overloaded constant definitions and type definitions can be combined together while still guaranteeing consistency. This paper presents a solution to this problem: non-overlapping definitions and termination of the definition-dependency relation (tracked not only through constants but also through types) ensures relative consistency of Isabelle/HOL
From types to sets by local type definitions in higher-order logic
Types in Higher-Order Logic (HOL) are naturally interpreted as nonempty sets—this intuition is reflected in the type definition rule for the HOL-based systems (including Isabelle/HOL), where a new type can be defined whenever a nonempty set is exhibited. However, in HOL this definition mechanism cannot be applied inside proof contexts. We propose a more expressive type definition rule that addresses the limitation and we prove its soundness. This higher expressive power opens the opportunity for a HOL tool that relativizes type-based statements to more flexible set-based variants in a principled way. We also address particularities of Isabelle/HOL and show how to perform the relativization in the presence of type classes
Safety and conservativity of definitions in HOL and Isabelle/HOL
Definitions are traditionally considered to be a safe mechanism for introducing concepts on top of a logic known to be consistent. In contrast to arbitrary axioms, definitions should in principle be treatable as a form of abbreviation, and thus compiled away from the theory without losing provability. In particular, definitions should form a conservative extension of the pure logic. These properties are crucial for modern interactive theorem provers, since they ensure the consistency of the logic, as well as a valid environment for total/certified functional programming.
We prove these properties, namely, safety and conservativity, for Higher-Order Logic (HOL), a logic implemented in several mainstream theorem provers and relied upon by thousands of users. Some unique features of HOL, such as the requirement to give non-emptiness proofs when defining new types and the impossibility to unfold type definitions, make the proof of these properties, and also the very formulation of safety, nontrivial.
Our study also factors in the essential variation of HOL definitions featured by Isabelle/HOL, a popular member of the HOL-based provers family. The current work improves on recent results which showed a weaker property, consistency of Isabelle/HOL’s definitions
A consistent foundation for Isabelle/HOL
The interactive theorem prover Isabelle/HOL is based on the well understood higher-order logic (HOL), which is widely believed to be consistent (and provably consistent in set theory by a standard semantic argument). However, Isabelle/HOL brings its own personal touch to HOL: overloaded constant definitions, used to provide the users with Haskell-like type classes. These features are a delight for the users, but unfortunately are not easy to get right as an extension of HOL—they have a history of inconsistent behavior. It has been an open question under which criteria overloaded constant definitions and type definitions can be combined together while still guaranteeing consistency. This paper presents a solution to this problem: non-overlapping definitions and termination of the definition-dependency relation (tracked not only through constants but also through types) ensures relative consistency of Isabelle/HOL
From types to sets by local type definition in higher-order logic
Types in higher-order logic (HOL) are naturally interpreted as nonempty sets. This intuition is reflected in the type definition rule for the HOL-based systems (including Isabelle/HOL), where a new type can be defined whenever a nonempty set is exhibited. However, in HOL this definition mechanism cannot be applied inside proof contexts. We propose a more expressive type definition rule that addresses the limitation and we prove its consistency. This higher expressive power opens the opportunity for a HOL tool that relativizes type-based statements to more flexible set-based variants in a principled way. We also address particularities of Isabelle/HOL and show how to perform the relativization in the presence of type classes
Comprehending Isabelle/HOL's consistency
The proof assistant Isabelle/HOL is based on an extension of Higher-Order Logic (HOL) with ad hoc overloading of constants. It turns out that the interaction between the standard HOL type definitions and the Isabelle-specific ad hoc overloading is problematic for the logical consistency. In previous work, we have argued that standard HOL semantics is no longer appropriate for capturing this interaction, and have proved consistency using a nonstandard semantics. The use of an exotic semantics makes that proof hard to digest by the community. In this paper, we prove consistency by proof-theoretic means—following the healthy intuition of definitions as abbreviations, realized in HOLC, a logic that augments HOL with comprehension types. We hope that our new proof settles the Isabelle/HOL consistency problem once and for all. In addition, HOLC offers a framework for justifying the consistency of new deduction schemas that address practical user needs
Foundational (co)datatypes and (co)recursion for higher-order logic
We describe a line of work that started in 2011 towards enriching Isabelle/HOL's language with coinductive datatypes, which allow infinite values, and with a more expressive notion of inductive datatype than previously supported by any system based on higher-order logic. These (co)datatypes are complemented by definitional principles for (co)recursive functions and reasoning principles for (co)induction. In contrast with other systems offering codatatypes, no additional axioms or logic extensions are necessary with our approach
A formally verified abstract account of Gödel's incompleteness theorems
We present an abstract development of Gödel’s incompleteness theorems, performed with the help of the Isabelle/HOL theorem prover. We analyze sufficient conditions for the theorems’ applicability to a partially specified logic. In addition to the usual benefits of generality, our abstract perspective enables a comparison between alternative approaches from the literature. These include Rosser’s variation of the first theorem, Jeroslow’s variation of the second theorem, and the S ́wierczkowski–Paulson semantics-based approach. As part of our framework’s validation, we upgrade Paulson’s Isabelle proof to produce a mech- anization of the second theorem that does not assume soundness in the standard model, and in fact does not rely on any notion of model or semantic interpretation