145 research outputs found
Temperature-induced reversal of magnetic interlayer exchange coupling
For epitaxial trilayers of the magnetic rare-earth metals Gd and Tb, exchange
coupled through a non-magnetic Y spacer layer, element-specific hysteresis
loops were recorded by the x-ray magneto-optical Kerr effect at the rare-earth
thresholds. This allowed us to quantitatively determine the strength of
interlayer exchange coupling (IEC). In addition to the expected oscillatory
behavior as a function of spacer-layer thickness , a temperature-induced
sign reversal of IEC was observed for constant , arising from
magnetization-dependent electron reflectivities at the magnetic interfaces.Comment: 4 pages, 4 figures; accepted version; minor changes and new Figs. 2
and 4 containing more dat
Rashba Effect at Magnetic Metal Surfaces
We give experimental and theoretical evidence of the Rashba effect at the
magnetic rare-earth metal surface Gd(0001). The Rashba effect is substantially
enhanced and the Rashba parameter changes its sign when a metal-oxide surface
layer is formed. The experimental observations are quantitatively described by
ab initio calculations that give a detailed account of the near-surface charge
density gradients causing the Rashba effect. Since the sign of the Rashba
splitting depends on the magnetization direction, the findings open up new
opportunities for the study of surface and interface magnetism.Comment: 4 Fig
Fermi Surface of Metallic VO from Angle-Resolved Photoemission: Mid-level Filling of Bands
Using angle resolved photoemission spectroscopy (ARPES) we report the first
band dispersions and distinct features of the bulk Fermi surface (FS) in the
paramagnetic metallic phase of the prototypical metal-insulator transition
material VO. Along the -axis we observe both an electron pocket and
a triangular hole-like FS topology, showing that both V 3 and
states contribute to the FS. These results challenge the existing
correlation-enhanced crystal field splitting theoretical explanation for the
transition mechanism and pave the way for the solution of this mystery.Comment: 5 pages, 4 figures plus supplement 12 pages, 3 figures, 1 tabl
Driving magnetic order in a manganite by ultrafast lattice excitation
Optical control of magnetism, of interest for high-speed data processing and
storage, has only been demonstrated with near-infrared excitation to date.
However, in absorbing materials, such high photon energies can lead to
significant dissipation, making switch back times long and miniaturization
challenging. In manganites, magnetism is directly coupled to the lattice, as
evidenced by the response to external and chemical pressure, or to
ferroelectric polarization. Here, femtosecond mid-infrared pulses are used to
excite the lattice in La0.5Sr1.5MnO4 and the dynamics of electronic order are
measured by femtosecond resonant soft x-ray scattering with an x-ray free
electron laser. We observe that magnetic and orbital orders are reduced by
excitation of the lattice. This process, which occurs within few picoseconds,
is interpreted as relaxation of the complex charge-orbital-spin structure
following a displacive exchange quench - a prompt shift in the equilibrium
value of the magnetic and orbital order parameters after the lattice has been
distorted. A microscopic picture of the underlying unidirectional lattice
displacement is proposed, based on nonlinear rectification of the
directly-excited vibrational field, as analyzed in the specific lattice
symmetry of La0.5Sr1.5MnO4. Control of magnetism through ultrafast lattice
excitation has important analogies to the multiferroic effect and may serve as
a new paradigm for high-speed optomagnetism.Comment: 10 pages manuscript, 4 figure
X-ray magneto-optics of lanthanide materials: principles and applications
Lanthanide metals are a particular class of magnetic materials in which the
magnetic moments are carried mainly by the localized electrons of the 4f shell.
They are frequently found in technically relevant systems, to achieve, e.g.,
high magnetic anisotropy. Magneto-optical methods in the x-ray range are well
suited to study complex magnetic materials in an element-specific way. In this
work, we report on recent progress on the quantitative determination of
magneto-optical constants of several lanthanides in the soft x-ray region and
we show some examples of applications of magneto-optics to hard-magnetic
interfaces and exchange-coupled layered structures containing lanthanide
elements.Comment: 7 pages, 6 figures, invited contribution to the Symposium "X-ray
magneto-optics" of the Spring Meeting of the German Physical Society held in
Regensburg, Germany, 8-12 March 2004. Revised version, minor change
Recommended from our members
Gender differences in the pharmacological actions of pegylated glucagon-Like peptide-1 on endothelial progenitor cells and angiogenic precursor cells in a combination of metabolic disorders and lung emphysema
In clinical practice, the metabolic syndrome (MetS) is often associated with chronic obstructive pulmonary disease (COPD). Although gender differences in MetS are well documented, little is known about sex-specific differences in the pathogenesis of COPD, especially when combined with MetS. Consequently, it is not clear whether the same treatment regime has comparable efficacy in men and women diagnosed with MetS and COPD. In the present study, using sodium glutamate, lipopolysaccharide, and cigarette smoke extract, we simulated lipid metabolism disorders, obesity, hyperglycemia, and pulmonary emphysema (comorbidity) in male and female C57BL/6 mice. We assessed the gender-specific impact of lipid metabolism disorders and pulmonary emphysema on angiogenic precursor cells (endothelial progenitor cells (EPC), pericytes, vascular smooth muscle cells, cells of the lumen of the nascent vessel), as well as the biological effects of pegylated glucagon-like peptide 1 (pegGLP-1) in this experimental paradigm. Simulation of MetS/COPD comorbidity caused an accumulation of EPC (CD45−CD31+CD34+), pericytes, and vascular smooth muscle cells in the lungs of female mice. In contrast, the number of cells involved in the angiogenesis decreased in the lungs of male animals. PegGLP-1 had a positive effect on lipids and area under the curve (AUC), obesity, and prevented the development of pulmonary emphysema. The severity of these effects was stronger in males than in females. Furthermore, PegGLP-1 stimulated regeneration of pulmonary endothelium. At the same time, PegGLP-1 administration caused a mobilization of EPC (CD45−CD31+CD34+) into the bloodstream in females and migration of precursors of angiogenesis and vascular smooth muscle cells to the lungs in male animals. Gender differences in stimulatory action of pegGLP-1 on CD31+ endothelial lung cells in vitro were not observed. Based on these findings, we postulated that the cellular mechanism of in vivo regeneration of lung epithelium was at least partly gender-specific. Thus, we concluded that a pegGLP-1-based treatment regime for metabolic disorder and COPD should be further developed primarily for male patients
Prediction of huge X-ray Faraday rotation at the Gd N_4,5 threshold
X-ray absorption spectra in a wide energy range around the 4d-4f excitation
threshold of Gd were recorded by total electron yield from in-plane magnetized
Gd metal films. Matching the experimental spectra to tabulated absorption data
reveals unprecedented short light absorption lengths down to 3 nm. The
associated real parts of the refractive index for circularly polarized light
propagating parallel or antiparallel to the Gd magnetization, determined
through the Kramers-Kronig transformation, correspond to a magneto-optical
Faraday rotation of 0.7 degrees per atomic layer. This finding shall allow the
study of magnetic structure and magnetization dynamics of lanthanide elements
in nanosize systems and dilute alloys.Comment: 4 pages, 2 figures, final version resubmitted to Phys. Rev. B, Brief
Reports. Minor change
- …