93 research outputs found

    Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results

    Get PDF
    The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review

    Party rules, party resources, and the politics of parliamentary democracies: how parties organize in the 21st Century

    Get PDF
    This article introduces the first findings of the Political Party Database (PPDB) project, a major survey of party organizations in parliamentary and semi-presidential democracies. The project’s first round of data covers 122 parties in 19 countries. In this paper we describe the scope of the database, then investigate what it tells us about contemporary party organization in these countries, focussing on parties’ resources, structures and internal decision-making. We examine organizational patterns by country and party family, and where possible we make temporal comparisons with older datasets. Our analyses suggest a remarkable coexistence of uniformity and diversity. In terms of the major organizational resources on which parties can draw, such as members, staff and finance, the new evidence largely confirms the continuation of trends identified in previous research: i.e., declining membership, but enhanced financial resources and more paid staff. We also find remarkable uniformity regarding the core architecture of party organizations. At the same time, however, we find substantial variation between countries and party families in terms of their internal processes, with particular regard to how internally democratic they are, and in the forms that this democratization takes

    Structure of the dimeric N-glycosylated form of fungal β-N-acetylhexosaminidase revealed by computer modeling, vibrational spectroscopy, and biochemical studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fungal β-<it>N</it>-acetylhexosaminidases catalyze the hydrolysis of chitobiose into its constituent monosaccharides. These enzymes are physiologically important during the life cycle of the fungus for the formation of septa, germ tubes and fruit-bodies. Crystal structures are known for two monomeric bacterial enzymes and the dimeric human lysosomal β-<it>N</it>-acetylhexosaminidase. The fungal β-<it>N</it>-acetylhexosaminidases are robust enzymes commonly used in chemoenzymatic syntheses of oligosaccharides. The enzyme from <it>Aspergillus oryzae </it>was purified and its sequence was determined.</p> <p>Results</p> <p>The complete primary structure of the fungal β-<it>N</it>-acetylhexosaminidase from <it>Aspergillus oryzae </it>CCF1066 was used to construct molecular models of the catalytic subunit of the enzyme, the enzyme dimer, and the <it>N</it>-glycosylated dimer. Experimental data were obtained from infrared and Raman spectroscopy, and biochemical studies of the native and deglycosylated enzyme, and are in good agreement with the models. Enzyme deglycosylated under native conditions displays identical kinetic parameters but is significantly less stable in acidic conditions, consistent with model predictions. The molecular model of the deglycosylated enzyme was solvated and a molecular dynamics simulation was run over 20 ns. The molecular model is able to bind the natural substrate – chitobiose with a stable value of binding energy during the molecular dynamics simulation.</p> <p>Conclusion</p> <p>Whereas the intracellular bacterial β-<it>N</it>-acetylhexosaminidases are monomeric, the extracellular secreted enzymes of fungi and humans occur as dimers. Dimerization of the fungal β-<it>N</it>-acetylhexosaminidase appears to be a reversible process that is strictly pH dependent. Oligosaccharide moieties may also participate in the dimerization process that might represent a unique feature of the exclusively extracellular enzymes. Deglycosylation had only limited effect on enzyme activity, but it significantly affected enzyme stability in acidic conditions. Dimerization and <it>N</it>-glycosylation are the enzyme's strategy for catalytic subunit stabilization. The disulfide bridge that connects Cys<sup>448 </sup>with Cys<sup>483 </sup>stabilizes a hinge region in a flexible loop close to the active site, which is an exclusive feature of the fungal enzymes, neither present in bacterial nor mammalian structures. This loop may play the role of a substrate binding site lid, anchored by a disulphide bridge that prevents the substrate binding site from being influenced by the flexible motion of the loop.</p

    Recent visible light and metal free strategies in [2+2] and [4+2] photocycloadditions

    Full text link
    When aiming to synthesize molecules with elevated molecular complexity starting from relatively simple starting materials, photochemical transformations represent an open avenue to circumvent analogous multistep procedures. Specifically, light-mediated cycloadditions remain as powerful tools to generate new bonds begotten from non-very intuitive disconnections, that alternative thermal protocols would not offer. In response to the current trend in both industrial and academic research pointing towards green and sustainable processes, several strategies that meet these requirements are currently available in the literature. This Minireview summarizes [2+2] and [4+2] photocycloadditions that do not require the use of metal photocatalysts by means of alternative strategies. It is segmented according to the cycloaddition type in order to give the reader a friendly approach and we primarily focus on the most recent developments in the field carried out using visible light, a general overview of the mechanism in each case is offered as wellFinancial support was provided by the European Research Council (ERC-CoG, Contract Number: 647550), the Spanish Government (RTI2018-095038-B-I00), the ‘Comunidad de Madrid’ and European Structural Funds (S2018/NMT-4367). R. I. R thanks Fundación Carolina for a graduate fellowshi

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km &lt;sup&gt;2&lt;/sup&gt; resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km &lt;sup&gt;2&lt;/sup&gt; pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Establishment risk from pet-trade freshwater turtles in the European Union

    No full text
    The pet-turtle market has grown in recent years and become an important pathway for the introduction of alien species in Europe. The import of Trachemys scripta elegans has been banned by European Commission Regulation due to its species’ expanding territory and negative impact on native species. Since the demand from hobby breeders persists, however, blocking imports of this popular subspecies opens up the possibility for the introduction of other potentially invasive turtles. We determined those turtle species most common in the pet trade within the Czech Republic, which is the most important producer, importer and exporter of ornamental aquatic animals in the EU. The determination of establishment risk for the EU as a whole was then individually evaluated for turtle species based on known establishment models. Chelydra serpentina, Apalone spinifera, Apalone mutica, and Sternotherus odoratus were considered most problematic, because these species have serious establishment risk and are imported to the EU in substantial numbers. Also localities in the EU were identified where probability is highest for establishment of non-native turtles
    corecore