2,387 research outputs found

    Laser Control of Dissipative Two-Exciton Dynamics in Molecular Aggregates

    Full text link
    There are two types of two-photon transitions in molecular aggregates, that is, non-local excitations of two monomers and local double excitations to some higher excited intra-monomer electronic state. As a consequence of the inter-monomer Coulomb interaction these different excitation states are coupled to each other. Higher excited intra-monomer states are rather short-lived due to efficient internal conversion of electronic into vibrational energy. Combining both processes leads to the annihilation of an electronic excitation state, which is a major loss channel for establishing high excitation densities in molecular aggregates. Applying theoretical pulse optimization techniques to a Frenkel exciton model it is shown that the dynamics of two-exciton states in linear aggregates (dimer to tetramer) can be influenced by ultrafast shaped laser pulses. In particular, it is studied to what extent the decay of the two-exciton population by inter-band transitions can be transiently suppressed. Intra-band dynamics is described by a dissipative hierarchy equation approach, which takes into account strong exciton-vibrational coupling in the non-Markovian regime.Comment: revised version, fig. 8 ne

    Hippocampal subfields and limbic white matter jointly predict learning rate in older adults

    No full text
    First published online: 04 December 2019Age-related memory impairments have been linked to differences in structural brain parameters, including cerebral white matter (WM) microstructure and hippocampal (HC) volume, but their combined influences are rarely investigated. In a population-based sample of 337 older participants aged 61-82 years (Mage = 69.66, SDage = 3.92 years), we modeled the independent and joint effects of limbic WM microstructure and HC subfield volumes on verbal learning. Participants completed a verbal learning task of recall over five repeated trials and underwent magnetic resonance imaging (MRI), including structural and diffusion scans. We segmented three HC subregions on high-resolution MRI data and sampled mean fractional anisotropy (FA) from bilateral limbic WM tracts identified via deterministic fiber tractography. Using structural equation modeling, we evaluated the associations between learning rate and latent factors representing FA sampled from limbic WM tracts, and HC subfield volumes, and their latent interaction. Results showed limbic WM and the interaction of HC and WM-but not HC volume alone-predicted verbal learning rates. Model decomposition revealed HC volume is only positively associated with learning rate in individuals with higher WM anisotropy. We conclude that the structural characteristics of limbic WM regions and HC volume jointly contribute to verbal learning in older adults

    Single Top Production at the Next Generation Linear e+e- Colliders

    Full text link
    Present limits on the top mass from LEP1 and Tevatron point to a top quark that is considerably heavier than the WW vector boson in the standard model. Hence, e+e- colliders with \sqrt{s} \simeq 300 GeV (the c.m. energy foreseen at the first phase of the Next Linear e+e- Collider) could be well below the energy threshold for real top-pair production. We argue that, if this is the case, single top production through the process e+e- --> t\bar{b}W- (\bar{t}bW+), where t\bar{b} (\bar{t}b) are produced mainly by means of a virtual W, becomes the dominant top production mechanism. Total cross sections and kinematical distributions are evaluated and numerical results are given in ranges of m_t and \sqrts{s} where single top production can be of relevance. The relative importance of virtual-W and virtual-t contributions to the process is discussed.Comment: 20 pages, LaTeX + feynman.tex, 10 compressed (tar.Z) postscript figures included in a separate uuencoded file, revised version of Rome1 Preprint n.979 (1993), Dec 29, 1993. (In this revised version -- accepted for publication on Zeit. fur Phys.C in Jan 24, 1994 -- some sentences and 3 new refs. have been added with respect to the first one

    Charge asymmetries of top quarks at hadron colliders revisited

    Get PDF
    A sizeable difference in the differential production cross section of top- compared to antitop-quark production, denoted charge asymmetry, has been observed at the Tevatron. The experimental results seem to exceed the theory predictions based on the Standard Model by a significant amount and have triggered a large number of suggestions for "new physics". In the present paper the Standard Model predictions for Tevatron and LHC experiments are revisited. This includes a reanalysis of electromagnetic as well as weak corrections, leading to a shift of the asymmetry by roughly a factor 1.1 when compared to the results of the first papers on this subject. The impact of cuts on the transverse momentum of the top-antitop system is studied. Restricting the ttbar system to a transverse momentum less than 20 GeV leads to an enhancement of the asymmetries by factors between 1.3 and 1.5, indicating the importance of an improved understanding of the ttˉt\bar t-momentum distribution. Predictions for similar measurements at the LHC are presented, demonstrating the sensitivity of the large rapidity region both to the Standard Model contribution and effects from "new physics".Comment: 23 pages. Final version to appear in JHE

    γ\gamma - Z interferometry at a Φ\Phi-factory

    Full text link
    We analyze the possibilities that the proposed Φ\Phi-factories offer to measure γZ\gamma-Z interference. In the unpolarized beam case, we study different signatures in the ρπ\rho \pi channel, taking advantage of the presence of the near-by a1a_1 resonance. We build a C-odd forward-backward asymmetry, estimated to be around 10510^{-5}, and (P-even, T-even) and (P-odd, T-odd) alignments of the ρ\rho, to be seen from the angular distribution of its ππ\pi \pi decay products. With polarized electrons a left-right asymmetry around 2×1042\times 10^{-4} is present in all channels. At leading order this asymmetry is independent of hadronic matrix elements and is sensitive to the Z0ssˉZ^0-s\bar{s} vector coupling. In the ρπ\rho \pi channel, a combined left-right forward-backward asymmetry is considered.Comment: 29 pages + 6 figures. Some changes concerning a1a_1 observables, especially related with possible 2 γ\gamma contribution

    A two step algorithm for learning from unspecific reinforcement

    Get PDF
    We study a simple learning model based on the Hebb rule to cope with "delayed", unspecific reinforcement. In spite of the unspecific nature of the information-feedback, convergence to asymptotically perfect generalization is observed, with a rate depending, however, in a non- universal way on learning parameters. Asymptotic convergence can be as fast as that of Hebbian learning, but may be slower. Moreover, for a certain range of parameter settings, it depends on initial conditions whether the system can reach the regime of asymptotically perfect generalization, or rather approaches a stationary state of poor generalization.Comment: 13 pages LaTeX, 4 figures, note on biologically motivated stochastic variant of the algorithm adde
    corecore