research

A two step algorithm for learning from unspecific reinforcement

Abstract

We study a simple learning model based on the Hebb rule to cope with "delayed", unspecific reinforcement. In spite of the unspecific nature of the information-feedback, convergence to asymptotically perfect generalization is observed, with a rate depending, however, in a non- universal way on learning parameters. Asymptotic convergence can be as fast as that of Hebbian learning, but may be slower. Moreover, for a certain range of parameter settings, it depends on initial conditions whether the system can reach the regime of asymptotically perfect generalization, or rather approaches a stationary state of poor generalization.Comment: 13 pages LaTeX, 4 figures, note on biologically motivated stochastic variant of the algorithm adde

    Similar works

    Available Versions

    Last time updated on 18/02/2019