22 research outputs found

    Interleukin-7 Influences FOXP3+CD4+ Regulatory T Cells Peripheral Homeostasis

    Get PDF
    Mechanisms governing peripheral CD4+ FOXP3+ regulatory T cells (Treg) survival and homeostasis are multiple suggesting tight and complex regulation of regulatory T cells homeostasis. Some specific factors, such as TGF-β, interleukin-2 (IL-2) and B7 costimulatory molecules have been identified as essentials for maintenance of the peripheral Treg compartment. Conversely, Treg dependency upon classical T cell homeostatic factors such as IL-7 is still unclear. In this work, we formally investigated the role of IL-7 in Treg homeostasis in vivo in murine models. We demonstrated that IL-7 availability regulated the size of peripheral Treg cell pool and thus paralleled the impact of IL-7 on conventional T cell pool. Moreover, we showed that IL-7 administration increased Treg cell numbers by inducing thymic-independent Treg peripheral expansion. Importantly the impact of IL-7 on Treg expansion was detected whether conventional T cells were present or absent as IL-7 directly participates to the peripheral expansion of Treg after adoptive transfer into lymphopenic hosts. Our results definitively identify IL-7 as a central factor contributing to Treg peripheral homeostasis, thus reassembling Treg to other T cell subsets in respect of their need for IL-7 for their peripheral maintenance

    Altered Responses to Homeostatic Cytokines in Patients with Idiopathic CD4 Lymphocytopenia

    Get PDF
    Idiopathic CD4 lymphocytopenia (ICL) is a rare immune deficiency characterized by a protracted CD4+ T cell loss of unknown etiology and by the occurrence of opportunistic infections similar to those seen in AIDS. We investigated whether a defect in responses to cytokines that control CD4+ T cell homeostasis could play a role in ICL. Immunophenotype and signaling responses to interleukin-7 (IL-7), IL-2, and thymic stromal lymphopoietin (TSLP) were analyzed by flow cytometry in CD4+ T cells from 15 ICL patients and 15 healthy blood donors. The induction of phospho-STAT5 after IL-7 stimulation was decreased in memory CD4+ T cells of some ICL patients, which correlated with a decreased expression of the IL-7R\uce\ub1 receptor chain (R = 0.74, p<0.005) and with lower CD4+ T cell counts (R = 0.69, p<0.005). IL-2 responses were also impaired, both in the Treg and conventional memory subsets. Decreased IL-2 responses correlated with decreased IL-7 responses (R = 0.75, p<0.005), pointing to combined defects that may significantly perturb CD4+ T cell homeostasis in a subset of ICL patients. Unexpectedly, responses to the IL-7-related cytokine TSLP were increased in ICL patients, while they remained barely detectable in healthy controls. TSLP responses correlated inversely with IL-7 responses (R = -0.41; p<0.05), suggesting a cross-regulation between the two cytokine systems. In conclusion, IL-7 and IL-2 signaling are impaired in ICL, which may account for the loss of CD4+ T cell homeostasis. Increased TSLP responses point to a compensatory homeostatic mechanism that may mitigate defects in \uce\ub3c cytokine responses. \uc2\ua9 2013 Bugault et al

    LISA AIVT Optical Ground Support Equipement technology developments

    No full text
    International audienceThe LISA space interferometer aims at GW detection with »3x10-20/√Hz strain sensitivity, resulting in a displacement sensitivity of 11pm/√Hz over a path length of 2.5x109 m in the frequency range from 3x10-5 to 1 Hz.The LISA France Collaboration is in charge of the ground optical tests of the MOSA (Moving Optical Sub-Assembly), including the Optical Bench, Telescope and Gravitational Reference Sensor. Special check-out equipment is required, such as the Far-Field Optical Ground Support Equipment aiming at measuring the Tilt-To-Length coupling coefficient between angular residual beam jitter and longitudinal path length. The FF-OGSE simulates the incoming jittering beam and measures the associated longitudinal path length change.We present two prototypes – the Zerodur InterFerOmeter and the TTL-OB - that will demonstrate the optical performance, the functional tests, the limits on sensitivity and the precision of the path length measurements achievable on-ground. These two benches are the first part of the design and specification for the FF-OGSE.The Stray Light OGSE aims at stray light characterization in the integrated MOSA. It measures and identifies, separately, the different sources of stray light through the measurement of the corresponding fringe patterns while scanning the laser’s optical frequency

    LISA AIVT Optical Ground Support Equipement technology developments

    No full text
    International audienceThe LISA space interferometer aims at GW detection with »3x10-20/√Hz strain sensitivity, resulting in a displacement sensitivity of 11pm/√Hz over a path length of 2.5x109 m in the frequency range from 3x10-5 to 1 Hz.The LISA France Collaboration is in charge of the ground optical tests of the MOSA (Moving Optical Sub-Assembly), including the Optical Bench, Telescope and Gravitational Reference Sensor. Special check-out equipment is required, such as the Far-Field Optical Ground Support Equipment aiming at measuring the Tilt-To-Length coupling coefficient between angular residual beam jitter and longitudinal path length. The FF-OGSE simulates the incoming jittering beam and measures the associated longitudinal path length change.We present two prototypes – the Zerodur InterFerOmeter and the TTL-OB - that will demonstrate the optical performance, the functional tests, the limits on sensitivity and the precision of the path length measurements achievable on-ground. These two benches are the first part of the design and specification for the FF-OGSE.The Stray Light OGSE aims at stray light characterization in the integrated MOSA. It measures and identifies, separately, the different sources of stray light through the measurement of the corresponding fringe patterns while scanning the laser’s optical frequency

    LISA AIVT Optical Ground Support Equipement technology developments

    No full text
    International audienceThe LISA space interferometer aims at GW detection with »3x10-20/√Hz strain sensitivity, resulting in a displacement sensitivity of 11pm/√Hz over a path length of 2.5x109 m in the frequency range from 3x10-5 to 1 Hz.The LISA France Collaboration is in charge of the ground optical tests of the MOSA (Moving Optical Sub-Assembly), including the Optical Bench, Telescope and Gravitational Reference Sensor. Special check-out equipment is required, such as the Far-Field Optical Ground Support Equipment aiming at measuring the Tilt-To-Length coupling coefficient between angular residual beam jitter and longitudinal path length. The FF-OGSE simulates the incoming jittering beam and measures the associated longitudinal path length change.We present two prototypes – the Zerodur InterFerOmeter and the TTL-OB - that will demonstrate the optical performance, the functional tests, the limits on sensitivity and the precision of the path length measurements achievable on-ground. These two benches are the first part of the design and specification for the FF-OGSE.The Stray Light OGSE aims at stray light characterization in the integrated MOSA. It measures and identifies, separately, the different sources of stray light through the measurement of the corresponding fringe patterns while scanning the laser’s optical frequency

    LISA AIVT Optical Ground Support Equipement technology developments

    No full text
    International audienceThe LISA space interferometer aims at GW detection with »3x10-20/√Hz strain sensitivity, resulting in a displacement sensitivity of 11pm/√Hz over a path length of 2.5x109 m in the frequency range from 3x10-5 to 1 Hz.The LISA France Collaboration is in charge of the ground optical tests of the MOSA (Moving Optical Sub-Assembly), including the Optical Bench, Telescope and Gravitational Reference Sensor. Special check-out equipment is required, such as the Far-Field Optical Ground Support Equipment aiming at measuring the Tilt-To-Length coupling coefficient between angular residual beam jitter and longitudinal path length. The FF-OGSE simulates the incoming jittering beam and measures the associated longitudinal path length change.We present two prototypes – the Zerodur InterFerOmeter and the TTL-OB - that will demonstrate the optical performance, the functional tests, the limits on sensitivity and the precision of the path length measurements achievable on-ground. These two benches are the first part of the design and specification for the FF-OGSE.The Stray Light OGSE aims at stray light characterization in the integrated MOSA. It measures and identifies, separately, the different sources of stray light through the measurement of the corresponding fringe patterns while scanning the laser’s optical frequency

    LISA AIVT Optical Ground Support Equipement technology developments

    No full text
    International audienceThe LISA space interferometer aims at GW detection with »3x10-20/√Hz strain sensitivity, resulting in a displacement sensitivity of 11pm/√Hz over a path length of 2.5x109 m in the frequency range from 3x10-5 to 1 Hz.The LISA France Collaboration is in charge of the ground optical tests of the MOSA (Moving Optical Sub-Assembly), including the Optical Bench, Telescope and Gravitational Reference Sensor. Special check-out equipment is required, such as the Far-Field Optical Ground Support Equipment aiming at measuring the Tilt-To-Length coupling coefficient between angular residual beam jitter and longitudinal path length. The FF-OGSE simulates the incoming jittering beam and measures the associated longitudinal path length change.We present two prototypes – the Zerodur InterFerOmeter and the TTL-OB - that will demonstrate the optical performance, the functional tests, the limits on sensitivity and the precision of the path length measurements achievable on-ground. These two benches are the first part of the design and specification for the FF-OGSE.The Stray Light OGSE aims at stray light characterization in the integrated MOSA. It measures and identifies, separately, the different sources of stray light through the measurement of the corresponding fringe patterns while scanning the laser’s optical frequency
    corecore