109 research outputs found

    Impact of Environment and Social Gradient on Leptospira Infection in Urban Slums

    Get PDF
    Leptospirosis, a life-threatening zoonotic disease, has become an important urban slum health problem. Epidemics of leptospirosis now occur in cities throughout the developing world, as the growth of slum settlements has produced conditions for rat-borne transmission of this disease. In this prevalence survey of more than 3,000 residents from a favela slum community in Brazil, Geographical Information System (GIS) and modeling approaches identified specific deficiencies in the sanitation infrastructure of slum environments—open sewers, refuse, and inadequate floodwater drainage—that serve as sources for Leptospira transmission. In addition to the environmental attributes of the slum environment, low socioeconomic status was found to independently contribute to the risk of infection. These findings indicate that effective prevention of leptospirosis will need to address the social factors that produce unequal health outcomes among slum residents, in addition to improving sanitation

    The improbable transmission of Trypanosoma cruzi to human: the missing link in the dynamics and control of Chagas disease

    Get PDF
    Chagas disease has a major impact on human health in Latin America and is becoming of global concern due to international migrations. Trypanosoma cruzi, the etiological agent of the disease, is one of the rare human parasites transmitted by the feces of its vector, as it is unable to reach the salivary gland of the insect. This stercorarian transmission is notoriously poorly understood, despite its crucial role in the ecology and evolution of the pathogen and the disease. The objective of this study was to quantify the probability of T. cruzi vectorial transmission to humans, and to use such an estimate to predict human prevalence from entomological data. We developed several models of T. cruzi transmission to estimate the probability of transmission from vector to host. Using datasets from the literature, we estimated the probability of transmission per contact with an infected triatomine to be 5.8x10(-4) (95%CI: [2.6; 11.0] x 10(-4)). This estimate was consistent across triatomine species, robust to variations in other parameters, and corresponded to 900-4,000 contacts per case. Our models subsequently allowed predicting human prevalence from vector abundance and infection rate in 7/10 independent datasets covering various triatomine species and epidemiological situations. This low probability of T. cruzi transmission reflected well the complex and unlikely mechanism of transmission via insect feces, and allowed predicting human prevalence from basic entomological data. Although a proof of principle study would now be valuable to validate our models' predictive ability in an even broader range of entomological and ecological settings, our quantitative estimate could allow switching the evaluation of disease risk and vector control program from purely entomological indexes to parasitological measures, as commonly done for other major vector borne diseases. This might lead to different quantitative perspectives as these indexes are well known not to be proportional one to another

    Diversity of 23S rRNA Genes within Individual Prokaryotic Genomes

    Get PDF
    The concept of ribosomal constraints on rRNA genes is deduced primarily based on the comparison of consensus rRNA sequences between closely related species, but recent advances in whole-genome sequencing allow evaluation of this concept within organisms with multiple rRNA operons. was the only species in which intragenomic diversity >3% was observed among 4 paralogous 23S rRNA genes.These findings indicate tight ribosomal constraints on individual 23S rRNA genes within a genome. Although classification using primary 23S rRNA sequences could be erroneous, significant diversity among paralogous 23S rRNA genes was observed only once in the 184 species analyzed, indicating little overall impact on the mainstream of 23S rRNA gene-based prokaryotic taxonomy

    Optimization of Control Strategies for Non-Domiciliated Triatoma dimidiata, Chagas Disease Vector in the Yucatán Peninsula, Mexico

    Get PDF
    Chagas disease is the most important vector-borne disease in Latin America. Residual insecticide spraying has been used successfully for the elimination of domestic vectors in many regions. However, some vectors of non-domestic origin are able to invade houses, and they are now a key challenge for further disease control. We developed a mathematical model to predict the temporal variations in abundance of non-domiciliated vectors inside houses, based on triatomine demographic parameters. The reliability of the predictions was demonstrated by comparing these with different sets of insect collection data from the Yucatan peninsula, Mexico. We then simulated vector control strategies based on insecticide spraying, insect, screens and bednets to evaluate their efficacy at reducing triatomine abundance in the houses. An optimum reduction in bug abundance by at least 80% could be obtained by insecticide application only when doses of at least 50 mg/m2 were applied every year within a two-month period matching the house invasion season by bugs. Alternatively, the use of insect screens consistently reduced bug abundance in the houses and offers a sustainable alternative. Such screens may be part of novel interventions for the integrated control of various vector-borne diseases

    Multiple-Locus Variable Number Tandem Repeat Analysis of Staphylococcus Aureus: Comparison with Pulsed-Field Gel Electrophoresis and spa-Typing

    Get PDF
    (MRSA) is required to study the routes and rates of transmission of this pathogen. Currently available typing techniques are either resource-intensive or have limited discriminatory ability. Multiple-locus variable number tandem repeat analysis (MLVA) may provide an alternative high throughput molecular typing tool with high epidemiological resolution.-sequence typing and PFGE, at the MLVA complex level with group separation values of 95.1% and 89.2%. MLVA could not discriminate between pig-related MRSA strains isolated from humans and pigs, corroborating the high degree of relationship. MLVA was also superior in the grouping of MRSA isolates previously assigned to temporal-spatial clusters with indistinguishable SpaTypes, demonstrating its enhanced epidemiological usefulness. that yields discrete and unambiguous data that can be used to assign biological meaningful genotypes and complexes and can be used for interlaboratory comparisons in network accessible databases. Results suggest that MLVA offsets the disadvantages of other high discriminatory typing approaches and represents a promising tool for hospital, national and international molecular epidemiology

    The architecture and effect of participation: a systematic review of community participation for communicable disease control and elimination. Implications for malaria elimination

    Get PDF
    Community engagement and participation has played a critical role in successful disease control and elimination campaigns in many countries. Despite this, its benefits for malaria control and elimination are yet to be fully realized. This may be due to a limited understanding of the influences on participation in developing countries as well as inadequate investment in infrastructure and resources to support sustainable community participation. This paper reports the findings of an atypical systematic review of 60 years of literature in order to arrive at a more comprehensive awareness of the constructs of participation for communicable disease control and elimination and provide guidance for the current malaria elimination campaign.Evidence derived from quantitative research was considered both independently and collectively with qualitative research papers and case reports. All papers included in the review were systematically coded using a pre-determined qualitative coding matrix that identified influences on community participation at the individual, household, community and government/civil society levels. Colour coding was also carried out to reflect the key primary health care period in which community participation programmes originated. These processes allowed exhaustive content analysis and synthesis of data in an attempt to realize conceptual development beyond that able to be achieved by individual empirical studies or case reports.Of the 60 papers meeting the selection criteria, only four studies attempted to determine the effect of community participation on disease transmission. Due to inherent differences in their design, interventions and outcome measures, results could not be compared. However, these studies showed statistically significant reductions in disease incidence or prevalence using various forms of community participation. The use of locally selected volunteers provided with adequate training, supervision and resources are common and important elements of the success of the interventions in these studies. In addition, qualitative synthesis of all 60 papers elucidates the complex architecture of community participation for communicable disease control and elimination which is presented herein.The current global malaria elimination campaign calls for a health systems strengthening approach to provide an enabling environment for programmes in developing countries. In order to realize the benefits of this approach it is vital to provide adequate investment in the 'people' component of health systems and understand the multi-level factors that influence their participation. The challenges of strengthening this component of health systems are discussed, as is the importance of ensuring that current global malaria elimination efforts do not derail renewed momentum towards the comprehensive primary health care approach. It is recommended that the application of the results of this systematic review be considered for other diseases of poverty in order to harmonize efforts at building 'competent communities' for communicable disease control and optimising health system effectiveness
    corecore