970 research outputs found

    Gee, But It\u27s Good To Get Home

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/1493/thumbnail.jp

    Checklist of bees (Hymenoptera: Apoidea) from small diversified vegetable farms in south-western Montana

    Get PDF
    Background Over three years (2013-2015), we sampled bees using nets and bowl traps on four diversified vegetable farms in Gallatin County, Montana, USA, as part of a study evaluating the use of wildflower strips for supporting wild bees and crop pollination services on farmlands (Delphia et al. In prep). We document 202 species and morphospecies from 32 genera within five families, of which 25 species represent the first published state records for Montana. This study increases our overall understanding of the distribution of wild bee species associated with agroecosystems of the northern US Rockies, which is important for efforts aimed at conserving bee biodiversity and supporting sustainable crop pollination systems on farmlands. New information We provide a species list of wild bees associated with diversified farmlands in Montana and increase the number of published bee species records in the state from 374 to at least 399. The list includes new distributional records for 25 wild bee species, including two species that represent considerable expansions of their known ranges, Lasioglossum (Dialictus) clematisellum (Cockerell 1904) with previously published records from New Mexico, Arizona, California and Utah and Melissodes (Eumelissodes) niveus Robertson 1895 which was reported to range from New York to Minnesota and Kansas, south to North Carolina, Alabama and Mississippi

    Stand-off Molecular Composition Analysis

    Get PDF
    Composition of distant stars can be explored by observing absorption spectra. Stars produce nearly blackbody radiation that passes through the cloud of vaporized material surrounding the star. Characteristic absorption lines are discernible with a spectrometer, and atomic composition is investigated by comparing spectral observations with known material profiles. Most objects in the solar system—asteroids, comets, planets, moons—are too cold to be interrogated in this manner. Material clouds around cold objects consist primarily of volatiles, so bulk composition cannot be probed. Additionally, low volatile density does not produce discernible absorption lines in the faint signal generated by cold objects. We propose a system for probing the molecular composition of cold solar system targets from a distant vantage. The concept utilizes a directed energy beam to melt and vaporize a spot on a distant target, such as from a spacecraft orbiting the object. With sufficient flux (~10 MW/m2) on a rocky asteroid, the spot temperature rises rapidly to ~2500 K, and evaporation of all materials on the surface occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a molecular plume in front of the spot. Bulk composition is investigated by using a spectrometer to view the heated spot through the ejected material. Spatial composition maps could be created by scanning the surface. Applying the beam to a single spot continuously produces a borehole, and shallow sub-surface composition profiling is possible. Initial simulations of absorption profiles with laser heating show great promise for molecular composition analysis

    Directed Energy Active Illumination for Near-Earth Object Detection

    Get PDF
    On 15 February 2013, a previously unknown ~20 m asteroid struck Earth near Chelyabinsk, Russia, releasing kinetic energy equivalent to ~570 kt TNT. Detecting objects like the Chelyabinsk impactor that are orbiting near Earth is a difficult task, in part because such objects spend much of their own orbits in the direction of the Sun when viewed from Earth. Efforts aimed at protecting Earth from future impacts will rely heavily on continued discovery. Ground-based optical observatory networks and Earth-orbiting spacecraft with infrared sensors have dramatically increased the pace of discovery. Still, less than 5% of near-Earth objects (NEOs) 100 m/~100 Mt TNT have been identified, and the proportion of known objects decreases rapidly for smaller sizes. Low emissivity of some objects also makes detection by passive sensors difficult. A proposed orbiting laser phased array directed energy system could be used for active illumination of NEOs, enhancing discovery particularly for smaller and lower emissivity objects. Laser fiber amplifiers emit very narrow-band energy, simplifying detection. Results of simulated illumination scenarios are presented based on an orbiting emitter array with specified characteristics. Simulations indicate that return signals from small and low emissivity objects is strong enough to detect. The possibility for both directed and full sky blind surveys is discussed, and the resulting diameter and mass limits for objects in different observational scenarios. The ability to determine both position and speed of detected objects is also discussed

    Optical Modeling for a Laser Phased-Array Directed Energy System

    Get PDF
    We present results of optical simulations for a laser phased array directed energy system. The laser array consists of individual optical elements in a square or hexagonal array. In a multi-element array, the far-field beam pattern depends on both mechanical pointing stability and on phase relationships between individual elements. The simulation incorporates realistic pointing and phase errors. Pointing error components include systematic offsets to simulate manufacturing and assembly variations. Pointing also includes time-varying errors that simulate structural vibrations, informed from random vibration analysis of the mechanical design. Phase errors include systematic offsets, and time-varying errors due to both mechanical vibration and temperature variation in the fibers. The optical simulation is used to determine beam pattern and pointing jitter over a range of composite error inputs. Results are also presented for a 1 m aperture array with 10 kW total power, designed as a stand-off system on a dedicated asteroid diversion/capture mission that seeks to evaporate the surface of the target at a distance of beyond 10 km. Phase stability across the array of λ/10 is shown to provide beam control that is sufficient to vaporize the surface of a target at 10 km. The model is also a useful tool for characterizing performance for phase controller design in relation to beam formation and pointing

    Local phase control for a planar array of fiber laser amplifiers

    Get PDF
    Arrays of phase-locked lasers have been developed for numerous directed-energy applications. Phased-array designs are capable of producing higher beam intensity than similar sized multi-beam emitters, and also allow beam steering and beam profile manipulation. In phased-array designs, individual emitter phases must be controllable, based on suitable feedback. Most current control schemes sample individual emitter phases, such as with an array-wide beam splitter, and compare to a master phase reference. Reliance on a global beam splitter limits scalability to larger array sizes due to lack of design modularity. This paper describes a conceptual design and control scheme that relies only on feedback from the array structure itself. A modular and scalable geometry is based on individual hexagonal frames for each emitter; each frame cell consists of a conventional lens mounted in front of the fiber tip. A rigid phase tap structure physically connects two adjacent emitter frame cells. A target sensor is mounted on top of the phase tap, representing the local alignment datum. Optical sensors measure the relative position of the phase tap and target sensor. The tap senses the exit phase of both emitters relative to the target normal plane, providing information to the phase controller for each emitter. As elements are added to the array, relative local position data between adjacent phase taps allows accurate prediction of the relative global position of emitters across the array, providing additional constraints to the phase controllers. The approach is scalable for target distance and number of emitters without loss of control

    Directed energy missions for planetary defense

    Get PDF
    Directed energy for planetary defense is now a viable option and is superior in many ways to other proposed technologies, being able to defend the Earth against all known threats. This paper presents basic ideas behind a directed energy planetary defense system that utilizes laser ablation of an asteroid to impart a deflecting force on the target. A conceptual philosophy called DE-STAR, which stands for Directed Energy System for Targeting of Asteroids and exploration, is an orbiting stand-off system, which has been described in other papers. This paper describes a smaller, stand-on system known as DE-STARLITE as a reduced-scale version of DE-STAR. Both share the same basic heritage of a directed energy array that heats the surface of the target to the point of high surface vapor pressure that causes significant mass ejection thus forming an ejection plume of material from the target that acts as a rocket to deflect the object. This is generally classified as laser ablation. DE-STARLITE uses conventional propellant for launch to LEO and then ion engines to propel the spacecraft from LEO to the near-Earth asteroid (NEA). During laser ablation, the asteroid itself provides the propellant source material; thus a very modest spacecraft can deflect an asteroid much larger than would be possible with a system of similar mission mass using ion beam deflection (IBD) or a gravity tractor. DE-STARLITE is capable of deflecting an Apophis-class (325 m diameter) asteroid with a 1- to 15-year targeting time (laser on time) depending on the system design. The mission fits within the rough mission parameters of the Asteroid Redirect Mission (ARM) program in terms of mass and size. DE-STARLITE also has much greater capability for planetary defense than current proposals and is readily scalable to match the threat. It can deflect all known threats with sufficient warning

    Chameleon radiation by oceanic dispersal

    Full text link
    Historical biogeography is dominated by vicariance methods that search for a congruent pattern of fragmentation of ancestral distributions produced by shared Earth history(1-3). A focus of vicariant studies has been austral area relationships and the break-up of the supercontinent Gondwana(3-5). Chameleons are one of the few extant terrestrial vertebrates thought to have biogeographic patterns that are congruent with the Gondwanan break-up of Madagascar and Africa(6,7). Here we show, using molecular and morphological evidence for 52 chameleon taxa, support for a phylogeny and area cladogram that does not fit a simple vicariant history. Oceanic dispersal-not Gondwanan breakup-facilitated species radiation, and the most parsimonious biogeographic hypothesis supports a Madagascan origin for chameleons, with multiple 'out-of-Madagascar' dispersal events to Africa, the Seychelles, the Comoros archipelago, and possibly Reunion Island. Although dispersal is evident in other Indian Ocean terrestrial animal groups(8-16), our study finds substantial out-of-Madagascar species radiation, and further highlights the importance of oceanic dispersal as a potential precursor for speciation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62614/1/415784a.pd

    DE-STARLITE: A Directed Energy Planetary Defense Mission

    Get PDF
    This paper presents the motivation behind and design of a directed energy planetary defense system that utilizes laser ablation of an asteroid to impart a deflecting force on the target. The proposed system is called DE-STARLITE for Directed Energy System for Targeting of Asteroids and ExploRation – LITE as it is a small, stand-on unit of a larger standoff DE-STAR system. Pursuant to the stand-on design, ion engines will propel the spacecraft from low-Earth orbit (LEO) to the near-Earth asteroid (NEA). During laser ablation, the asteroid itself becomes the propellant ; thus a very modest spacecraft can deflect an asteroid much larger than would be possible with a system of similar mission mass using ion beam deflection (IBD) or a gravity tractor. DE-STARLITE is capable of deflecting an Apophis-class (325 m diameter) asteroid with a 15-year targeting time. The mission fits within the rough mission parameters of the Asteroid Redirect Mission (ARM) program in terms of mass and size and has much greater capability for planetary defense than current proposals and is readily scalable to the threat. It can deflect all known threats with sufficient warning
    • …
    corecore