2,320 research outputs found

    Entanglement measurement of the quadrature components without the homodyne detection in the spatially multi-mode far-field

    Full text link
    We consider the measuring procedure that in principle allows to avoid the homodyne detection for the simultaneous selection of both quadrature components in the far-field. The scheme is based on the use of the coherent sources of the non-classical light. The possibilities of the procedure are illustrated on the basis of the use of pixellised sources, where the phase-locked sub-Poissonian lasers or the degenerate optical parametric oscillator generating above threshold are chosen as the pixels. The theory of the pixellised source of the spatio-temporal squeezed light is elaborated as a part of this investigation.Comment: 11 pages, 5 figures, RevTeX4. Submitted to Phys. Rev.

    Determination of two-body potentials from n-body spectra

    Get PDF
    We show how the two-body potential may be uniquely determined from n-body spectra where the hypercentral approximation is valid. We illustrate this by considering an harmonic oscillator potential which has been altered by changing the energy or normalisation constant of the ground state of the n-body system and finding how this modifies the two-body potential. It is shown that with increasing number of particles the spectrum must be known more precisely to obtain the two-body potential to the same degree of accuracy.Comment: 13 pages of text (LATEX), 3 figures (not included, available from authors), NIKHEF-93-P

    Zeeman slowers made simple with permanent magnets in a Halbach configuration

    Full text link
    We describe a simple Zeeman slower design using permanent magnets. Contrary to common wire-wound setups no electric power and water cooling are required. In addition, the whole system can be assembled and disassembled at will. The magnetic field is however transverse to the atomic motion and an extra repumper laser is necessary. A Halbach configuration of the magnets produces a high quality magnetic field and no further adjustment is needed. After optimization of the laser parameters, the apparatus produces an intense beam of slow and cold 87Rb atoms. With a typical flux of 1 - 5 \times 10^10 atoms/s at 30 ms^-1, our apparatus efficiently loads a large magneto-optical trap with more than 10^10 atoms in one second, which is an ideal starting point for degenerate quantum gases experiments.Comment: 8+6 pages (article + appendices: calculation details, probe and oven description, pictures), 18 figures, supplementary material (movie, Mathematica programs and technical drawings

    Independent nonclassical tests for states and measurements in the same experiment

    Get PDF
    We show that one single experiment can test simultaneously and independently both the nonclassicality of states and measurements by the violation or fulfillment of classical bounds on the statistics. Nonideal measurements affected by imperfections can be characterized by two bounds depending on whether we test the ideal measurement or the real one.Comment: 9 pages, 3 figures. Proceedings of 17th CEWQO 201

    Radiation-pressure cooling and optomechanical instability of a micro-mirror

    Get PDF
    Recent experimental progress in table-top experiments or gravitational-wave interferometers has enlightened the unique displacement sensitivity offered by optical interferometry. As the mirrors move in response to radiation pressure, higher power operation, though crucial for further sensitivity enhancement, will however increase quantum effects of radiation pressure, or even jeopardize the stable operation of the detuned cavities proposed for next-generation interferometers. The appearance of such optomechanical instabilities is the result of the nonlinear interplay between the motion of the mirrors and the optical field dynamics. In a detuned cavity indeed, the displacements of the mirror are coupled to intensity fluctuations, which modifies the effective dynamics of the mirror. Such "optical spring" effects have already been demonstrated on the mechanical damping of an electromagnetic waveguide with a moving wall, on the resonance frequency of a specially designed flexure oscillator, and through the optomechanical instability of a silica micro-toroidal resonator. We present here an experiment where a micro-mechanical resonator is used as a mirror in a very high-finesse optical cavity and its displacements monitored with an unprecedented sensitivity. By detuning the cavity, we have observed a drastic cooling of the micro-resonator by intracavity radiation pressure, down to an effective temperature of 10 K. We have also obtained an efficient heating for an opposite detuning, up to the observation of a radiation-pressure induced instability of the resonator. Further experimental progress and cryogenic operation may lead to the experimental observation of the quantum ground state of a mechanical resonator, either by passive or active cooling techniques

    Detailed analysis of the gluonic excitation in the three-quark system in lattice QCD

    Full text link
    We study the excited-state potential and the gluonic excitation in the static three-quark (3Q) system using SU(3) lattice QCD with 163×3216^3\times 32 at ÎČ\beta=5.8 and 6.0 at the quenched level. For about 100 different patterns of spatially-fixed 3Q systems, we accurately extract the excited-state potential V3Qe.s.V_{\rm 3Q}^{\rm e.s.} together with the ground-state potential V3Qg.s.V_{\rm 3Q}^{\rm g.s.} by diagonalizing the QCD Hamiltonian in the presence of three quarks. The gluonic excitation energy ΔE3Q≡V3Qe.s.−V3Qg.s.\Delta E_{\rm 3Q} \equiv V_{\rm 3Q}^{\rm e.s.}-V_{\rm 3Q}^{\rm g.s.} is found to be about 1 GeV at the typical hadronic scale. This large gluonic-excitation energy is conjectured to give a physical reason of the success of the quark model for low-lying hadrons even without explicit gluonic modes. We investigate the functional form of ΔE3Q\Delta E_{\rm 3Q} in terms of the 3Q location. The lattice data of ΔE3Q\Delta E_{\rm 3Q} are relatively well reproduced by the ``inverse Mercedes Ansatz'' with the ``modified Y-type flux-tube length'', which indicates that the gluonic-excitation mode is realized as a complicated bulk excitation of the whole 3Q system.Comment: 13pages, 13figure

    The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board Curiosity

    Get PDF
    The Mars Science Laboratory rover Curiosity encountered potassium-rich clastic sedimentary rocks at two sites in Gale Crater, the waypoints Cooperstown and Kimberley. These rocks include several distinct meters thick sedimentary outcrops ranging from fine sandstone to conglomerate, interpreted to record an ancient fluvial or fluvio-deltaic depositional system. From ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) chemical analyses, this suite of sedimentary rocks has an overall mean K2O abundance that is more than 5 times higher than that of the average Martian crust. The combined analysis of ChemCam data with stratigraphic and geographic locations reveals that the mean K2O abundance increases upward through the stratigraphic section. Chemical analyses across each unit can be represented as mixtures of several distinct chemical components, i.e., mineral phases, including K-bearing minerals, mafic silicates, Fe-oxides, and Fe-hydroxide/oxyhydroxides. Possible K-bearing minerals include alkali feldspar (including anorthoclase and sanidine) and K-bearing phyllosilicate such as illite. Mixtures of different source rocks, including a potassium-rich rock located on the rim and walls of Gale Crater, are the likely origin of observed chemical variations within each unit. Physical sorting may have also played a role in the enrichment in K in the Kimberley formation. The occurrence of these potassic sedimentary rocks provides additional evidence for the chemical diversity of the crust exposed at Gale Crater
    • 

    corecore