research

Detailed analysis of the gluonic excitation in the three-quark system in lattice QCD

Abstract

We study the excited-state potential and the gluonic excitation in the static three-quark (3Q) system using SU(3) lattice QCD with 163×3216^3\times 32 at β\beta=5.8 and 6.0 at the quenched level. For about 100 different patterns of spatially-fixed 3Q systems, we accurately extract the excited-state potential V3Qe.s.V_{\rm 3Q}^{\rm e.s.} together with the ground-state potential V3Qg.s.V_{\rm 3Q}^{\rm g.s.} by diagonalizing the QCD Hamiltonian in the presence of three quarks. The gluonic excitation energy ΔE3QV3Qe.s.V3Qg.s.\Delta E_{\rm 3Q} \equiv V_{\rm 3Q}^{\rm e.s.}-V_{\rm 3Q}^{\rm g.s.} is found to be about 1 GeV at the typical hadronic scale. This large gluonic-excitation energy is conjectured to give a physical reason of the success of the quark model for low-lying hadrons even without explicit gluonic modes. We investigate the functional form of ΔE3Q\Delta E_{\rm 3Q} in terms of the 3Q location. The lattice data of ΔE3Q\Delta E_{\rm 3Q} are relatively well reproduced by the ``inverse Mercedes Ansatz'' with the ``modified Y-type flux-tube length'', which indicates that the gluonic-excitation mode is realized as a complicated bulk excitation of the whole 3Q system.Comment: 13pages, 13figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020