55 research outputs found

    Morphologic examination of the temporal bone by cone beam computed tomography: Comparison with multislice helical computed tomography

    Get PDF
    SummaryIntroductionHigh-resolution CT imaging is essential to diagnosis and follow-up of temporal bone pathology. Morphologically, CT is the reference examination. The requirement of long-term follow-up thus exposes patients to cumulative radiation doses. Limiting exposure to ionizing radiation is an increasing concern of public health authorities. The principal advantage of Cone Beam CT (CBCT) lies in a significant reduction in radiation dose. The main objective of the present study was to assess the morphologic concordance between CBCT and Multislice Helical Computed Tomography (MSCT) on 20 anatomic landmarks corresponding to regions of interest in clinical practice. The secondary objectives were to compare the two techniques qualitatively in stapes and footplate assessment and measurement of footplate thickness, and quantitatively in terms of dosimetry.Material and methodsAn experimental anatomical study was performed on 12 temporal bones from fresh human cadavers of unknown clinical history. Each underwent CBCT and MSCT.ResultsThere was no significant difference in morphologic assessment of the temporal bones on the two techniques. Exploration of the stapes, incudostapedial joint, anterior stapediovestibular joint and footplate was qualitatively more precise on CBCT, and footplate thickness showed less overestimation than on MSCT. CBCT delivered 22 times less radiation than MSCT under the present experimental conditions.ConclusionCBCT provides reliable morphologic assessment of temporal bone, thanks to higher spatial resolution than on MSCT, with significantly reduced radiation dose

    Antioxidant Protects against Increases in Low Molecular Weight Hyaluronan and Inflammation in Asphyxiated Newborn Pigs Resuscitated with 100% Oxygen

    Get PDF
    BACKGROUND: Newborn resuscitation with 100% oxygen is associated with oxidative-nitrative stresses and inflammation. The mechanisms are unclear. Hyaluronan (HA) is fragmented to low molecular weight (LMW) by oxidative-nitrative stresses and can promote inflammation. We examined the effects of 100% oxygen resuscitation and treatment with the antioxidant, N-acetylcysteine (NAC), on lung 3-nitrotyrosine (3-NT), LMW HA, inflammation, TNFα and IL1ß in a newborn pig model of resuscitation. METHODS & PRINCIPAL FINDINGS: Newborn pigs (n = 40) were subjected to severe asphyxia, followed by 30 min ventilation with either 21% or 100% oxygen, and were observed for the subsequent 150 minutes in 21% oxygen. One 100% oxygen group was treated with NAC. Serum, bronchoalveolar lavage (BAL), lung sections, and lung tissue were obtained. Asphyxia resulted in profound hypoxia, hypercarbia and metabolic acidosis. In controls, HA staining was in airway subepithelial matrix and no 3-NT staining was seen. At the end of asphyxia, lavage HA decreased, whereas serum HA increased. At 150 minutes after resuscitation, exposure to 100% oxygen was associated with significantly higher BAL HA, increased 3NT staining, and increased fragmentation of lung HA. Lung neutrophil and macrophage contents, and serum TNFα and IL1ß were higher in animals with LMW than those with HMW HA in the lung. Treatment of 100% oxygen animals with NAC blocked nitrative stress, preserved HMW HA, and decreased inflammation. In vitro, peroxynitrite was able to fragment HA, and macrophages stimulated with LMW HA increased TNFα and IL1ß expression. CONCLUSIONS & SIGNIFICANCE: Compared to 21%, resuscitation with 100% oxygen resulted in increased peroxynitrite, fragmentation of HA, inflammation, as well as TNFα and IL1ß expression. Antioxidant treatment prevented the expression of peroxynitrite, the degradation of HA, and also blocked increases in inflammation and inflammatory cytokines. These findings provide insight into potential mechanisms by which exposure to hyperoxia results in systemic inflammation

    Agroecological management of cucurbit-infesting fruit fly: a review

    Full text link

    Evidence that cochlear-implanted deaf patients are better multisensory integrators

    No full text
    The cochlear implant (CI) is a neuroprosthesis that allows profoundly deaf patients to recover speech intelligibility. This recovery goes through long-term adaptative processes to build coherent percepts from the coarse information delivered by the implant. Here we analyzed the longitudinal postimplantation evolution of word recognition in a large sample of CI users in unisensory (visual or auditory) and bisensory (visuoauditory) conditions. We found that, despite considerable recovery of auditory performance during the first year postimplantation, CI patients maintain a much higher level of word recognition in speechreading conditions compared with normally hearing subjects, even several years after implantation. Consequently, we show that CI users present higher visuoauditory performance when compared with normally hearing subjects with similar auditory stimuli. This better performance is not only due to greater speechreading performance, but, most importantly, also due to a greater capacity to integrate visual input with the distorted speech signal. Our results suggest that these behavioral changes in CI users might be mediated by a reorganization of the cortical network involved in speech recognition that favors a more specific involvement of visual areas. Furthermore, they provide crucial indications to guide the rehabilitation of CI patients by using visually oriented therapeutic strategies

    Visual activity predicts auditory recovery from deafness after adult cochlear implantation.

    No full text
    Modern cochlear implantation technologies allow deaf patients to understand auditory speech; however, the implants deliver only a coarse auditory input and patients must use long-term adaptive processes to achieve coherent percepts. In adults with post-lingual deafness, the high progress of speech recovery is observed during the first year after cochlear implantation, but there is a large range of variability in the level of cochlear implant outcomes and the temporal evolution of recovery. It has been proposed that when profoundly deaf subjects receive a cochlear implant, the visual cross-modal reorganization of the brain is deleterious for auditory speech recovery. We tested this hypothesis in post-lingually deaf adults by analysing whether brain activity shortly after implantation correlated with the level of auditory recovery 6 months later. Based on brain activity induced by a speech-processing task, we found strong positive correlations in areas outside the auditory cortex. The highest positive correlations were found in the occipital cortex involved in visual processing, as well as in the posterior-temporal cortex known for audio-visual integration. The other area, which positively correlated with auditory speech recovery, was localized in the left inferior frontal area known for speech processing. Our results demonstrate that the visual modality's functional level is related to the proficiency level of auditory recovery. Based on the positive correlation of visual activity with auditory speech recovery, we suggest that visual modality may facilitate the perception of the word's auditory counterpart in communicative situations. The link demonstrated between visual activity and auditory speech perception indicates that visuoauditory synergy is crucial for cross-modal plasticity and fostering speech-comprehension recovery in adult cochlear-implanted deaf patients
    corecore