111 research outputs found

    Towards two-dimensional metallic behavior at LaAlO3/SrTiO3 interfaces

    Full text link
    Using a low-temperature conductive-tip atomic force microscope in cross-section geometry we have characterized the local transport properties of the metallic electron gas that forms at the interface between LaAlO3 and SrTiO3. At low temperature, we find that the carriers do not spread away from the interface but are confined within ~10 nm, just like at room temperature. Simulations taking into account both the large temperature and electric-field dependence of the permittivity of SrTiO3 predict a confinement over a few nm for sheet carrier densities larger than ~6 10^13 cm-2. We discuss the experimental and simulations results in terms of a multi-band carrier system. Remarkably, the Fermi wavelength estimated from Hall measurements is ~16 nm, indicating that the electron gas in on the verge of two-dimensionality.Comment: Accepted for publication in Physical Review Letter

    Dynamical response and confinement of the electrons at the LaAlO3/SrTiO3 interface

    Full text link
    With infrared ellipsometry and transport measurements we investigated the electrons at the interface between LaAlO3 and SrTiO3. We obtained a sheet carrier density of Ns~5-9x 10E13 cm^-2, an effective mass of m*~3m_e, and a strongly frequency dependent mobility. The latter are similar as in bulk SrTi1-xNbxO3 and therefore suggestive of polaronic correlations of the confined carriers. We also determined the vertical density profile which has a strongly asymmetric shape with a rapid initial decay over the first 2 nm and a pronounced tail that extends to about 11 nm.Comment: 4 pages, 3 figures, 1 EPAPS file (3 figures

    Momentum dependence of the superconducting gap in NdFeAsO1-xFx single crystals measured by angle resolved photoemission spectroscopy

    Get PDF
    We use angle resolved photoemission spectroscopy (ARPES) to study the momentum dependence of the superconducting gap in NdFeAsO1-xFx single crystals. We find that the Gamma hole pocket is fully gapped below the superconducting transition temperature. The value of the superconducting gap is 15 +- 1.5 meV and its anisotropy around the hole pocket is smaller than 20% of this value. This is consistent with an isotropic or anisotropic s-wave symmetry of the order parameter or exotic d-wave symmetry with nodes located off the Fermi surface sheets. This is a significant departure from the situation in the cuprates, pointing to possibility that the superconductivity in the iron arsenic based system arises from a different mechanism.Comment: 4 pages, 3 figure

    Engineering the magnetic and magnetocaloric properties of PrVO3 epitaxial oxide thin films by strain effects

    Full text link
    Combining multiple degrees of freedom in strongly-correlated materials such as transition-metal oxides would lead to fascinating magnetic and magnetocaloric features. Herein, the strain effects are used to markedly tailor the magnetic and magnetocaloric properties of PrVO3 thin films. The selection of appropriate thickness and substrate enables us to dramatically decrease the coercive magnetic field from 2.4 T previously observed in sintered PVO3 bulk to 0.05 T for compressive thin films making from the PrVO3 compound a nearly soft magnet. This is associated with a marked enhancement of the magnetic moment and the magnetocaloric effect that reach unusual maximum values of roughly 4.86 uB and 56.8 J/kg K in the magnetic field change of 6 T applied in the sample plane at the cryogenic temperature range (3 K), respectively. This work strongly suggests that taking advantage of different degrees of freedom and the exploitation of multiple instabilities in a nanoscale regime is a promising strategy for unveiling unexpected phases accompanied by a large magnetocaloric effect in oxides.Comment: This paper is accepted for publication in Applied Physics Letter

    Point defect distribution in high-mobility conductive SrTiO3 crystals

    Get PDF
    We have carried out positron annihilation spectroscopy to characterize the spatial distribution and the nature of vacancy defects in insulating as-received as well as in reduced SrTiO3 substrates exhibiting high-mobility conduction. The substrates were reduced either by ion etching the substrate surfaces or by doping with vacancies during thin film deposition at low pressure and high temperature. We show that Ti-vacancies are native defects homogeneously distributed in as-received substrates. In contrast, the dominant vacancy defects are the same both in ion-etched and substrates reduced during the film growth, and they consist of non-homogeneous distributions of cation-oxygen vacancy complexes. Their spatial extension is tuned from a few microns in ion-etched samples to the whole substrate in specimens reduced during film deposition. Our results shed light on the transport mechanisms of conductive SrTiO3 crystals and on strategies for defect-engineered oxide quantum wells, wires and dots

    Two-dimensional superconductivity at a Mott-Insulator/Band-Insulator interface: LaTiO3/SrTiO3

    Full text link
    Transition metal oxides display a great variety of quantum electronic behaviours where correlations often play an important role. The achievement of high quality epitaxial interfaces involving such materials gives a unique opportunity to engineer artificial structures where new electronic orders take place. One of the most striking result in this area is the recent observation of a two-dimensional electron gas at the interface between a strongly correlated Mott insulator LaTiO3 and a band insulator SrTiO3. The mechanism responsible for such a behaviour is still under debate. In particular, the influence of the nature of the insulator has to be clarified. Here we show that despite the expected electronic correlations, LaTiO3/SrTiO3 heterostructures undergo a superconducting transition at a critical temperature Tc=300 mK. We have found that the superconducting electron gas is confined over a typical thickness of 12 nm. We discuss the electronic properties of this system and review the possible scenarios

    Built-in and induced polarization across LaAlO3_3/SrTiO3_3 heterojunctions

    Full text link
    Ionic crystals terminated at oppositely charged polar surfaces are inherently unstable and expected to undergo surface reconstructions to maintain electrostatic stability. Essentially, an electric field that arises between oppositely charged atomic planes gives rise to a built-in potential that diverges with thickness. In ultra thin film form however the polar crystals are expected to remain stable without necessitating surface reconstructions, yet the built-in potential has eluded observation. Here we present evidence of a built-in potential across polar \lao ~thin films grown on \sto ~substrates, a system well known for the electron gas that forms at the interface. By performing electron tunneling measurements between the electron gas and a metallic gate on \lao ~we measure a built-in electric field across \lao ~of 93 meV/\AA. Additionally, capacitance measurements reveal the presence of an induced dipole moment near the interface in \sto, illuminating a unique property of \sto ~substrates. We forsee use of the ionic built-in potential as an additional tuning parameter in both existing and novel device architectures, especially as atomic control of oxide interfaces gains widespread momentum.Comment: 6 pages, 4 figures. Submitted to Nature physics on May 1st, 201

    Pairing symmetry and properties of iron-based high temperature superconductors

    Full text link
    Pairing symmetry is important to indentify the pairing mechanism. The analysis becomes particularly timely and important for the newly discovered iron-based multi-orbital superconductors. From group theory point of view we classified all pairing matrices (in the orbital space) that carry irreducible representations of the system. The quasiparticle gap falls into three categories: full, nodal and gapless. The nodal-gap states show conventional Volovik effect even for on-site pairing. The gapless states are odd in orbital space, have a negative superfluid density and are therefore unstable. In connection to experiments we proposed possible pairing states and implications for the pairing mechanism.Comment: 4 pages, 1 table, 2 figures, polished versio
    • …
    corecore