12,084 research outputs found
Accelerating Universe as Window for Extra Dimensions
Homogeneous cosmological solutions are obtained in five dimensional space
time assuming equations of state and where p
is the isotropic 3 - pressure and , that for the fifth dimension. Using
different values for the constants k and many known solutions are
rediscovered. Further the current acceleration of the universe has led us to
investigate higher dimensional gravity theory, which is able to explain
acceleration from a theoretical view point without the need of introducing dark
energy by hand. We argue that the terms containing higher dimensional metric
coefficients produce an extra negative pressure that apparently drives an
acceleration of the 3D space, tempting us to suggest that the accelerating
universe seems to act as a window to the existence of extra spatial dimensions.
Interestingly the 5D matter field remains regular while the \emph{effective}
negative pressure is responsible for the inflation. Relaxing the assumptions of
two equations of state we also present a class of solutions which provide early
deceleration followed by a late acceleration in a unified manner. Interesting
to point out that in this case our cosmology apparently mimics the well known
quintessence scenario fuelled by a generalised Chaplygin-type of fluid where a
smooth transition from a dust dominated model to a de Sitter like one takes
place.Comment: 20 pages,3 figure
Percentile Queries in Multi-Dimensional Markov Decision Processes
Markov decision processes (MDPs) with multi-dimensional weights are useful to
analyze systems with multiple objectives that may be conflicting and require
the analysis of trade-offs. We study the complexity of percentile queries in
such MDPs and give algorithms to synthesize strategies that enforce such
constraints. Given a multi-dimensional weighted MDP and a quantitative payoff
function , thresholds (one per dimension), and probability thresholds
, we show how to compute a single strategy to enforce that for all
dimensions , the probability of outcomes satisfying is at least . We consider classical quantitative payoffs from
the literature (sup, inf, lim sup, lim inf, mean-payoff, truncated sum,
discounted sum). Our work extends to the quantitative case the multi-objective
model checking problem studied by Etessami et al. in unweighted MDPs.Comment: Extended version of CAV 2015 pape
Non-Zero Sum Games for Reactive Synthesis
In this invited contribution, we summarize new solution concepts useful for
the synthesis of reactive systems that we have introduced in several recent
publications. These solution concepts are developed in the context of non-zero
sum games played on graphs. They are part of the contributions obtained in the
inVEST project funded by the European Research Council.Comment: LATA'16 invited pape
Value Iteration for Long-run Average Reward in Markov Decision Processes
Markov decision processes (MDPs) are standard models for probabilistic
systems with non-deterministic behaviours. Long-run average rewards provide a
mathematically elegant formalism for expressing long term performance. Value
iteration (VI) is one of the simplest and most efficient algorithmic approaches
to MDPs with other properties, such as reachability objectives. Unfortunately,
a naive extension of VI does not work for MDPs with long-run average rewards,
as there is no known stopping criterion. In this work our contributions are
threefold. (1) We refute a conjecture related to stopping criteria for MDPs
with long-run average rewards. (2) We present two practical algorithms for MDPs
with long-run average rewards based on VI. First, we show that a combination of
applying VI locally for each maximal end-component (MEC) and VI for
reachability objectives can provide approximation guarantees. Second, extending
the above approach with a simulation-guided on-demand variant of VI, we present
an anytime algorithm that is able to deal with very large models. (3) Finally,
we present experimental results showing that our methods significantly
outperform the standard approaches on several benchmarks
Mean-payoff Automaton Expressions
Quantitative languages are an extension of boolean languages that assign to
each word a real number. Mean-payoff automata are finite automata with
numerical weights on transitions that assign to each infinite path the long-run
average of the transition weights. When the mode of branching of the automaton
is deterministic, nondeterministic, or alternating, the corresponding class of
quantitative languages is not robust as it is not closed under the pointwise
operations of max, min, sum, and numerical complement. Nondeterministic and
alternating mean-payoff automata are not decidable either, as the quantitative
generalization of the problems of universality and language inclusion is
undecidable.
We introduce a new class of quantitative languages, defined by mean-payoff
automaton expressions, which is robust and decidable: it is closed under the
four pointwise operations, and we show that all decision problems are decidable
for this class. Mean-payoff automaton expressions subsume deterministic
mean-payoff automata, and we show that they have expressive power incomparable
to nondeterministic and alternating mean-payoff automata. We also present for
the first time an algorithm to compute distance between two quantitative
languages, and in our case the quantitative languages are given as mean-payoff
automaton expressions
Neuromorphic In-Memory Computing Framework using Memtransistor Cross-bar based Support Vector Machines
This paper presents a novel framework for designing support vector machines
(SVMs), which does not impose restriction on the SVM kernel to be
positive-definite and allows the user to define memory constraint in terms of
fixed template vectors. This makes the framework scalable and enables its
implementation for low-power, high-density and memory constrained embedded
application. An efficient hardware implementation of the same is also
discussed, which utilizes novel low power memtransistor based cross-bar
architecture, and is robust to device mismatch and randomness. We used
memtransistor measurement data, and showed that the designed SVMs can achieve
classification accuracy comparable to traditional SVMs on both synthetic and
real-world benchmark datasets. This framework would be beneficial for design of
SVM based wake-up systems for internet of things (IoTs) and edge devices where
memtransistors can be used to optimize system's energy-efficiency and perform
in-memory matrix-vector multiplication (MVM).Comment: 4 pages, 5 figures, MWSCAS 201
The O-Ring Theory, Geographical Distribution Of Misery And Corruption
The approach in this paper is to explore the relationship between corruption perception index (CPI) and human development index (HDI) in order to determine whether or not poor countries resort to corrupt practices as a way of getting over their level of hopelessness. The results show that corruption poses a problem to all countries and consequently to world economic development
Parameter-Independent Strategies for pMDPs via POMDPs
Markov Decision Processes (MDPs) are a popular class of models suitable for
solving control decision problems in probabilistic reactive systems. We
consider parametric MDPs (pMDPs) that include parameters in some of the
transition probabilities to account for stochastic uncertainties of the
environment such as noise or input disturbances.
We study pMDPs with reachability objectives where the parameter values are
unknown and impossible to measure directly during execution, but there is a
probability distribution known over the parameter values. We study for the
first time computing parameter-independent strategies that are expectation
optimal, i.e., optimize the expected reachability probability under the
probability distribution over the parameters. We present an encoding of our
problem to partially observable MDPs (POMDPs), i.e., a reduction of our problem
to computing optimal strategies in POMDPs.
We evaluate our method experimentally on several benchmarks: a motivating
(repeated) learner model; a series of benchmarks of varying configurations of a
robot moving on a grid; and a consensus protocol.Comment: Extended version of a QEST 2018 pape
- âŠ