1,196 research outputs found

    Exploring Oxidation in the Remote Free Troposphere: Insights from Atmospheric Tomography (ATom)

    Get PDF
    Earth's atmosphere oxidizes the greenhouse gas methane and other gases, thus determining their lifetimes and oxidation products. Much of this oxidation occurs in the remote, relatively clean free troposphere above the planetary boundary layer, where the oxidation chemistry is thought to be much simpler and better understood than it is in urban regions or forests. The NASA airborne Atmospheric Tomography study (ATom) was designed to produce cross sections of the detailed atmospheric composition in the remote atmosphere over the Pacific and Atlantic Oceans during four seasons. As part of the extensive ATom data set, measurements of the atmosphere's primary oxidant, hydroxyl (OH), and hydroperoxyl (HO₂) are compared to a photochemical box model to test the oxidation chemistry. Generally, observed and modeled median OH and HO₂ agree to with combined uncertainties at the 2σ confidence level, which is ~±40%. For some seasons, this agreement is within ~±20% below 6 km altitude. While this test finds no significant differences, OH observations increasingly exceeded modeled values at altitudes above 8 km, becoming ~35% greater, which is near the combined uncertainties. Measurement uncertainty and possible unknown measurement errors complicate tests for unknown chemistry or incorrect reaction rate coefficients that would substantially affect the OH and HO₂ abundances. Future analysis of detailed comparisons may yield additional discrepancies that are masked in the median values

    Impact of killer-immunoglobulin-like receptor and human leukocyte antigen genotypes on the efficacy of immunotherapy in acute myeloid leukemia

    Get PDF
    Interactions between killer-immunoglobulin-like receptors (KIRs) and their HLA class I ligands are instrumental in natural killer (NK) cell regulation and protect normal tissue from NK cell attack. Human KIR haplotypes comprise genes encoding mainly inhibitory receptors (KIR A) or activating and inhibitory receptors (KIR B). A substantial fraction of humans lack ligands for inhibitory KIRs (iKIRs), that is, a 'missing ligand' genotype. KIR B/x and missing ligand genotypes may thus give rise to potentially autoreactive, unlicensed NK cells. Little is known regarding the impact of such genotypes in untransplanted acute myeloid leukemia (AML). For this study, NK cell phenotypes and KIR/HLA genotypes were determined in 81 AML patients who received immunotherapy with histamine dihydrochloride and low-dose IL-2 for relapse prevention (NCT01347996). We observed that presence of unlicensed NK cells impacted favorably on clinical outcome, in particular among patients harboring functional NK cells reflected by high expression of the natural cytotoxicity receptor (NCR) NKp46. Genotype analyses suggested that the clinical benefit of high NCR expression was restricted to patients with a missing ligand genotype and/or a KIR B/x genotype. These data imply that functional NK cells are significant anti-leukemic effector cells in patients with KIR/HLA genotypes that favor NK cell autoreactivity

    Quantum jumps of light recording the birth and death of a photon in a cavity

    Full text link
    A microscopic system under continuous observation exhibits at random times sudden jumps between its states. The detection of this essential quantum feature requires a quantum non-demolition (QND) measurement repeated many times during the system evolution. Quantum jumps of trapped massive particles (electrons, ions or molecules) have been observed, which is not the case of the jumps of light quanta. Usual photodetectors absorb light and are thus unable to detect the same photon twice. They must be replaced by a transparent counter 'seeing' photons without destroying them3. Moreover, the light has to be stored over a duration much longer than the QND detection time. We have fulfilled these challenging conditions and observed photon number quantum jumps. Microwave photons are stored in a superconducting cavity for times in the second range. They are repeatedly probed by a stream of non-absorbing atoms. An atom interferometer measures the atomic dipole phase shift induced by the non-resonant cavity field, so that the final atom state reveals directly the presence of a single photon in the cavity. Sequences of hundreds of atoms highly correlated in the same state, are interrupted by sudden state-switchings. These telegraphic signals record, for the first time, the birth, life and death of individual photons. Applying a similar QND procedure to mesoscopic fields with tens of photons opens new perspectives for the exploration of the quantum to classical boundary

    Decoherence of a Pointer by a Gas Reservoir

    Get PDF
    We study the effect of the environment on the process of the measurement of a state of a microscopic spin half system. The measuring apparatus is a heavy particle, whose center of mass coordinates can be considered at the end of the measurement as approximately classical, and thus can be used as a pointer. The state of the pointer, which is the result of its interaction with the spin, is transformed into a mixed state by the coupling of the pointer to the environment. The environment is considered to be a gas reservoir, whose particles interact with the pointer. This results in a Fokker-Planck equation for the reduced density matrix of the pointer. The solution of the equation shows that the quantum coherences, which are characteristic to the entangled state between the probabilities to find the pointer in one of two positions, decays exponentially fast in time. We calculate the exponential decay function of this decoherence effect, and express it in terms of the parameters of the model.Comment: 41 pages, 1 figur

    Environmental exposures: an underrecognized contribution to noncommunicable diseases

    Get PDF
    Previous attempts to determine the degree to which exposure to environmental factors contribute to noncommunicable diseases (NCDs) have been very conservative and have significantly underestimated the actual contribution of the environment for at least two reasons. Firstly, most previous reports have excluded the contribution of lifestyle behavioral risk factors, but these usually involve significant exposure to environmental chemicals that increase risk of disease. Secondly, early life exposure to chemical contaminants is now clearly associated with an elevated risk of several diseases later in life, but these connections are often difficult to discern. This is especially true for asthma and neurodevelopmental conditions, but there is also a major contribution to the development of obesity and chronic diseases. Most cancers are caused by environmental exposures in genetically susceptible individuals. In addition, new information shows significant associations between cardiovascular diseases and diabetes and exposure to environmental chemicals present in air, food, and water. These relationships likely reflect the combination of epigenetic effects and gene induction. Environmental factors contribute significantly more to NCDs than previous reports have suggested. Prevention needs to shift focus from individual responsibility to societal responsibility and an understanding that effective prevention of NCDs ultimately relies on improved environmental management to reduce exposure to modifiable risks

    Decoherence and the rate of entropy production in chaotic quantum systems

    Get PDF
    We show that for an open quantum system which is classically chaotic (a quartic double well with harmonic driving coupled to a sea of harmonic oscillators) the rate of entropy production has, as a function of time, two relevant regimes: For short times it is proportional to the diffusion coefficient (fixed by the system--environment coupling strength). For longer times (but before equilibration) there is a regime where the entropy production rate is fixed by the Lyapunov exponent. The nature of the transition time between both regimes is investigated.Comment: Revtex, 4 pages, 3 figures include

    Backshell Radiative Heating on Human-Scale Mars Entry Vehicles

    Get PDF
    This work quantifies the backshell radiative heating experienced by payloads on human- scale vehicles entering the Martian atmosphere. Three underlying configurations were studied: a generic sphere, a sphere-cone forebody with a cylindrical payload, and an ellipsled. Computational fluid dynamics simulations of the flow field and radiation were performed using the LAURA and HARA codes, respectively. Results of this work indicated the primary contributor to radiative heating is emission from the CO2 IR band system. Furthermore, the backshell radiation component of heating can persist lower than 2 km/s during entry and descent. For the sphere-cone configuration a peak heat flux of about 3.5 W/cm(exp. 2) was observed at the payload juncture during entry. At similar conditions, the ellipsled geometry experienced about 1.25 W/cm(exp. 2) on the backshell, but as much as 8 W/cm(exp. 2) on the base at very high angle of attack. Overall, this study sheds light on the potential magnitudes of backshell radiative heating that various configurations may experience. These results may serve as a starting point for thermal protection system design or configuration changes necessary to accommodate thermal radiation levels

    Quantum Nondemolition State Measurement via Atomic Scattering in Bragg Regime

    Full text link
    We suggest a quantum nondemolition scheme to measure a quantized cavity field state using scattering of atoms in general Bragg regime. Our work extends the QND measurement of a cavity field from Fock state, based on first order Bragg deflection [9], to any quantum state based on Bragg deflection of arbitrary order. In addition a set of experimental parameters is provided to perform the experiment within the frame work of the presently available technology.Comment: 11 pages text, 4 eps figures, to appear in letter section of journal of physical society of Japa
    • …
    corecore