1,694 research outputs found

    On BLM scale fixing in exclusive processes

    Full text link
    We discuss the BLM scale fixing procedure in exclusive electroproduction processes in the Bjorken regime. We show that in the case of vector meson production the usual way to aplly the BLM method fails due to singularities present in equations fixing the BLM scale. We argue that the BLM scale should be extracted from the squared amplitudes which are directly related to observables.Comment: accepted for the publication in Eur.Phys.J.

    Towards a SDLCQ test of the Maldacena Conjecture

    Get PDF
    We consider the Maldacena conjecture applied to the near horizon geometry of a D1-brane in the supergravity approximation and present numerical results of a test of the conjecture against the boundary field theory calculation using DLCQ. We previously calculated the two-point function of the stress-energy tensor on the supergravity side; the methods of Gubser, Klebanov, Polyakov, and Witten were used. On the field theory side, we derived an explicit expression for the two-point function in terms of data that may be extracted from the supersymmetric discrete light cone quantization (SDLCQ) calculation at a given harmonic resolution. This yielded a well defined numerical algorithm for computing the two-point function. For the supersymmetric Yang-Mills theory with 16 supercharges that arises in the Maldacena conjecture, the algorithm is perfectly well defined; however, the size of the numerical computation prevented us from obtaining a numerical check of the conjecture. We now present numerical results with approximately 1000 times as many states as we previously considered. These results support the Maldacena conjecture and are within 101510-15% of the predicted numerical results in some regions. Our results are still not sufficient to demonstrate convergence, and, therefore, cannot be considered to a numerical proof of the conjecture. We present a method for using a ``flavor'' symmetry to greatly reduce the size of the basis and discuss a numerical method that we use which is particularly well suited for this type of matrix element calculation.Comment: 10 pages, 1 figur

    Piezoelectric-based apparatus for strain tuning

    Get PDF
    We report the design and construction of piezoelectric-based apparatus for applying continuously tuneable compressive and tensile strains to test samples. It can be used across a wide temperature range, including cryogenic temperatures. The achievable strain is large, so far up to 0.23% at cryogenic temperatures. The apparatus is compact and compatible with a wide variety of experimental probes. In addition, we present a method for mounting high-aspect-ratio samples in order to achieve high strain homogeneity.Comment: 8 pages, 8 figure

    The Pion Light-Cone Wave Function Phi_pi on the lattice: a partonic signal?

    Get PDF
    We determine the conditions required to study the pion light-cone wave function Phi_pi with a new method: a direct display of the partons constituting the pion. We present the preliminary results of a lattice computation of Phi_pi following this direction. An auxiliary scalar-quark is introduced. The spectroscopy of its bound states is studied. We observe some indications of a partonic behavior of the system of this scalar-quark and the anti-quark.Comment: 3 pages, 4 figures, Lattice2001(matrixelement

    Extraction of the pion distribution amplitude from polarized muon pair production

    Get PDF
    We consider the production of muon pairs from the scattering of pions on longitudinally polarized protons. We calculate the cross section and the single spin asymmetry for this process, taking into account pion bound state effects. We work in the kinematic region where the photon has a large longitudinal momentum fraction, which allows us to treat the bound state problem perturbatively. Our predictions are directly proportional to the pion distribution amplitude. A measurement of the polarized Drell-Yan cross section thus allows the determination of the shape of the pion distribution amplitude.Comment: 13 pages, using revtex, two figures added separately as one uuencoded Z-compressed fil

    Light-Front-Quantized QCD in Covariant Gauge

    Get PDF
    The light-front (LF) canonical quantization of quantum chromodynamics in covariant gauge is discussed. The Dirac procedure is used to eliminate the constraints in the gauge-fixed front form theory quantum action and to construct the LF Hamiltonian formulation. The physical degrees of freedom emerge naturally. The propagator of the dynamical ψ+\psi_+ part of the free fermionic propagator in the LF quantized field theory is shown to be causal and not to contain instantaneous terms. Since the relevant propagators in the covariant gauge formulation are causal, rotational invariance---including the Coulomb potential in the static limit---can be recovered, avoiding the difficulties encountered in light-cone gauge. The Wick rotation may also be performed allowing the conversion of momentum space integrals into Euclidean space forms. Some explicit computations are done in quantum electrodynamics to illustrate the equivalence of front form theory with the conventional covariant formulation. LF quantization thus provides a consistent formulation of gauge theory, despite the fact that the hyperplanes x±=0x^{\pm}=0 used to impose boundary conditions constitute characteristic surfaces of a hyperbolic partial differential equation.Comment: LaTex, 16 page

    Electroproduction of Charmonia off Nuclei

    Get PDF
    In a recent publication we have calculated elastic charmonium production in ep collisions employing realistic charmonia wave functions and dipole cross sections and have found good agreement with the data in a wide range of s and Q^2. Using the ingredients from those calculations we calculate exclusive electroproduction of charmonia off nuclei. Here new effects become important, (i) color filtering of the c-cbar pair on its trajectory through nuclear matter, (ii) dependence on the finite lifetime of the c-cbar fluctuation (coherence length) and (iii) gluon shadowing in a nucleus compared to the one in a nucleon. Total coherent and incoherent cross sections for C, Cu and Pb as functions of s and Q^2 are presented together with some differential cross sections. The results can be tested with future electron-nucleus colliders or in peripheral collisions of ultrarelativistic heavy ions.Comment: 21 pages of Latex including 14 figures; few misprints are fixe

    The Perils of `Soft' SUSY Breaking

    Get PDF
    We consider a two dimensional SU(N) gauge theory coupled to an adjoint Majorana fermion, which is known to be supersymmetric for a particular value of fermion mass. We investigate the `soft' supersymmetry breaking of the discrete light cone quantization (DLCQ) of this theory. There are several DLCQ formulations of this theory currently in the literature and they naively appear to behave differently under `soft' supersymmetry breaking at finite resolution. We show that all these formulations nevertheless yield identical bound state masses in the decompactification limit of the light-like circle. Moreover, we are able to show that the supersymmetry-inspired version of DLCQ (so called `SDLCQ') provides the best rate of convergence of DLCQ bound state masses towards the actual continuum values, except possibly near or at the critical fermion mass. In this last case, we discuss improved extrapolation schemes that must supplement the DLCQ algorithm in order to obtain correct continuum bound state masses. Interestingly, when we truncate the Fock space to two particles, the SDLCQ prescription presented here provides a scheme for improving the rate of convergence of the massive t'Hooft model. Thus the supersymmetry-inspired SDLCQ prescription is applicable to theories without supersymmetry.Comment: 11 pages, Latex; 2 figures (EPS); Numerical results extended; conclusions revise

    Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena

    Full text link
    Light-Front Holography, a remarkable feature of the AdS/CFT correspondence, maps amplitudes in anti-de Sitter (AdS) space to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schrodinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is identified with a Lorentz-invariant coordinate zeta which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound-state wavefunctions and the fall-off in the invariant mass of the constituents. The soft-wall holographic model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics -- a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryons. The model predicts a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number n. The hadron eigensolutions projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions which describe the hadron's momentum and spin distributions needed to compute measures of hadron structure at the quark and gluon level. The effective confining potential also creates quark- antiquark pairs. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also presented.Comment: Presented at LIGHTCONE 2011, 23 - 27 May, 2011, Dallas, T
    corecore