134 research outputs found
A cloud-based robot system for long-term interaction: principles, implementation, lessons learned
Making the transition to long-term interaction with social-robot systems has been identified as one of the main challenges in human-robot interaction. This article identifies four design principles to address this challenge and applies them in a real-world implementation: cloud-based robot control, a modular design, one common knowledge base for all applications, and hybrid artificial intelligence for decision making and reasoning. The control architecture for this robot includes a common Knowledge-base (ontologies), Data-base, “Hybrid Artificial Brain” (dialogue manager, action selection and explainable AI), Activities Centre (Timeline, Quiz, Break and Sort, Memory, Tip of the Day, ), Embodied Conversational Agent (ECA, i.e., robot and avatar), and Dashboards (for authoring and monitoring the interaction). Further, the ECA is integrated with an expandable set of (mobile) health applications. The resulting system is a Personal Assistant for a healthy Lifestyle (PAL), which supports diabetic children with self-management and educates them on health-related issues (48 children, aged 6–14, recruited via hospitals in the Netherlands and in Italy). It is capable of autonomous interaction “in the wild” for prolonged periods of time without the need for a “Wizard-of-Oz” (up until 6 months online). PAL is an exemplary system that provides personalised, stable and diverse, long-term human-robot interaction
Climate change challenges for central banks and financial regulators
The academic and policy debate regarding the role of central banks and financial regulators in addressing climate-related financial risks has rapidly expanded in recent years. This Perspective presents the key controversies and discusses potential research and policy avenues for the future. Developing a comprehensive analytical framework to assess the potential impact of climate change and the low-carbon transition on financial stability seems to be the first crucial challenge. These enhanced risk measures could then be incorporated in setting financial regulations and implementing the policies of central banks
Debating the Desirability of New Biomedical Technologies: Lessons from the Introduction of Breast Cancer Screening in the Netherlands
Health technology assessment (HTA) was developed in the 1970s and 1980s to facilitate decision making on the desirability of new biomedical technologies. Since then, many of the standard tools and methods of HTA have been criticized for their implicit normativity. At the same time research into the character of technology in practice has motivated philosophers, sociologists and anthropologists to criticize the traditional view of technology as a neutral instrument designed to perform a specific function. Such research suggests that the tools and methods of more traditional forms of HTA are often inspired by an ‘instrumentalist’ conception of technology that does not fit the way technology actually works. This paper explores this hypothesis for a specific case: the assessments and deliberations leading to the introduction of breast cancer screening in the Netherlands. After reconstructing this history of HTA ‘in the making’ the stepwise model of HTA that emerged during the process is discussed. This model was rooted indeed in an instrumentalist conception of technology. However, a more detailed reconstruction of several episodes from this history reveals how the actors already experienced the inadequacy of some of the instrumentalist presuppositions. The historical case thus shows how an instrumentalist conception of technology may result in implicit normative effects. The paper concludes that an instrumentalist view of technology is not a good starting point for HTA and briefly suggests how the fit between HTA methods and the actual character of technology in practice might be improved
Adenoviral gene transfer of angiostatic ATF-BPTI inhibits tumour growth
BACKGROUND: The outgrowth of new vessels – angiogenesis – in the tumour mass is considered to be a limiting factor of tumour growth. To inhibit the matrix lysis that is part of the tumour angiogenesis, we employed the chimeric protein mhATF-BPTI, composed of the receptor binding part of the urokinase (ATF) linked to an inhibitor of plasmin (BPTI). METHODS: For delivery, recombinant adenovirus encoding the transgene of interest was injected intravenously or locally into the tumour. The anti tumour effect of this compound was compared to that of human endostatin and of mhATF alone in two different rat bronchial carcinomas growing either as subcutaneous implants or as metastases. RESULTS: Significant inhibition of the tumour growth and decrease of the number of lung metastasis was achieved when the concentration of mhATF-BPTI at the tumour site was above 400 of ng / g tissue. This concentration could be achieved via production by the liver, only if permissive to the recombinant adenovirus. When the tumour cells could be transduced, local delivery of the vector was enough to obtain a response. In the case of metastasis, the capacity of the lung tissue to concentrate the encoded protein was essential to reach the required therapeutic levels. Further, endostatin or mhATF could not reproduce the effects of mhATF-BPTI, at similar concentrations (mhATF) and even at 10-fold higher concentration (endostatin). CONCLUSION: The ATF-BPTI was shown to inhibit tumour growth of different rat lung tumours when critical concentration was reached. In these tumour models, endostatin or ATF induce almost no tumour response
Exploitation of Herpesvirus Immune Evasion Strategies to Modify the Immunogenicity of Human Mesenchymal Stem Cell Transplants
BACKGROUND: Mesenchymal stem cells (MSCs) are multipotent cells residing in the connective tissue of many organs and holding great potential for tissue repair. In culture, human MSCs (hMSCs) are capable of extensive proliferation without showing chromosomal aberrations. Large numbers of hMSCs can thus be acquired from small samples of easily obtainable tissues like fat and bone marrow. MSCs can contribute to regeneration indirectly by secretion of cytokines or directly by differentiation into specialized cell types. The latter mechanism requires their long-term acceptance by the recipient. Although MSCs do not elicit immune responses in vitro, animal studies have revealed that allogeneic and xenogeneic MSCs are rejected. METHODOLOGY/PRINCIPAL FINDINGS: We aim to overcome MSC immune rejection through permanent down-regulation of major histocompatibility complex (MHC) class I proteins on the surface of these MHC class II-negative cells through the use of viral immune evasion proteins. Transduction of hMSCs with a retroviral vector encoding the human cytomegalovirus US11 protein resulted in strong inhibition of MHC class I surface expression. When transplanted into immunocompetent mice, persistence of the US11-expressing and HLA-ABC-negative hMSCs at levels resembling those found in immunodeficient (i.e., NOD/SCID) mice could be attained provided that recipients' natural killer (NK) cells were depleted prior to cell transplantation. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate the potential utility of herpesviral immunoevasins to prevent rejection of xenogeneic MSCs. The observation that down-regulation of MHC class I surface expression renders hMSCs vulnerable to NK cell recognition and cytolysis implies that multiple viral immune evasion proteins are likely required to make hMSCs non-immunogenic and thereby universally transplantable
Haematopoietic SCT in severe autoimmune diseases: updated guidelines of the European Group for Blood and Marrow Transplantation
In 1997, the first consensus guidelines for haematopoietic SCT (HSCT) in autoimmune diseases (ADs) were published, while an international coordinated clinical programme was launched. These guidelines provided broad principles for the field over the following decade and were accompanied by comprehensive data collection in the European Group for Blood and Marrow Transplantation (EBMT) AD Registry. Subsequently, retrospective analyses and prospective phase I/II studies generated evidence to support the feasibility, safety and efficacy of HSCT in several types of severe, treatment-resistant ADs, which became the basis for larger-scale phase II and III studies. In parallel, there has also been an era of immense progress in biological therapy in ADs. The aim of this document is to provide revised and updated guidelines for both the current application and future development of HSCT in ADs in relation to the benefits, risks and health economic considerations of other modern treatments. Patient safety considerations are central to guidance on patient selection and HSCT procedural aspects within appropriately experienced and Joint Accreditation Committee of International Society for Cellular Therapy and EBMT accredited centres. A need for prospective interventional and non-interventional studies, where feasible, along with systematic data reporting, in accordance with EBMT policies and procedures, is emphasized
Radiation and breast cancer: a review of current evidence
This paper summarizes current knowledge on ionizing radiation-associated breast cancer in the context of established breast cancer risk factors, the radiation dose–response relationship, and modifiers of dose response, taking into account epidemiological studies and animal experiments. Available epidemiological data support a linear dose–response relationship down to doses as low as about 100 mSv. However, the magnitude of risk per unit dose depends strongly on when radiation exposure occurs: exposure before the age of 20 years carries the greatest risk. Other characteristics that may influence the magnitude of dose-specific risk include attained age (that is, age at observation for risk), age at first full-term birth, parity, and possibly a history of benign breast disease, exposure to radiation while pregnant, and genetic factors
History of clinical transplantation
The emergence of transplantation has seen the development of increasingly potent immunosuppressive agents, progressively better methods of tissue and organ preservation, refinements in histocompatibility matching, and numerous innovations is surgical techniques. Such efforts in combination ultimately made it possible to successfully engraft all of the organs and bone marrow cells in humans. At a more fundamental level, however, the transplantation enterprise hinged on two seminal turning points. The first was the recognition by Billingham, Brent, and Medawar in 1953 that it was possible to induce chimerism-associated neonatal tolerance deliberately. This discovery escalated over the next 15 years to the first successful bone marrow transplantations in humans in 1968. The second turning point was the demonstration during the early 1960s that canine and human organ allografts could self-induce tolerance with the aid of immunosuppression. By the end of 1962, however, it had been incorrectly concluded that turning points one and two involved different immune mechanisms. The error was not corrected until well into the 1990s. In this historical account, the vast literature that sprang up during the intervening 30 years has been summarized. Although admirably documenting empiric progress in clinical transplantation, its failure to explain organ allograft acceptance predestined organ recipients to lifetime immunosuppression and precluded fundamental changes in the treatment policies. After it was discovered in 1992 that long-surviving organ transplant recipient had persistent microchimerism, it was possible to see the mechanistic commonality of organ and bone marrow transplantation. A clarifying central principle of immunology could then be synthesized with which to guide efforts to induce tolerance systematically to human tissues and perhaps ultimately to xenografts
- …