47 research outputs found
Species Review of Amphibian Extinction Risks in Madagascar: Conclusions from the Global Amphibian Assessment
We assessed the extinction risks of Malagasy amphibians by evaluating their distribution, occurrence in protected areas, population trends, habitat quality, and prevalence in commercial trade. We estimated and mapped the distribution of each of the 220 described Malagasy species and applied, for the first time, the IUCN Red List categories and criteria to all species described at the time of the assessment. Nine species were categorized as critically endangered, 21 as endangered, and 25 as vulnerable. The most threatened species occur on the High Plateau and/or have been subjected to overcollection for the pet trade, but restricted extent of occurrence and ongoing habitat destruction were identified as the most important factors influencing extinction threats. The two areas with the majority of threatened species were the northern Tsaratanana-Marojejy-Masoala highlands and the southeastern Anosy Mountains. The current system of protected areas includes 82% of the threatened amphibian species. Of the critically endangered species, 6 did not occur in any protected area. For conservation of these species we recommend the creation of a reserve for the species of the Mantella aurantiaca group, the inclusion of two Scaphiophryne species in the Convention on the International Trade in Endangered Species Appendix II, and the suspension of commercial collecting for Mantella cowani . Field surveys during the last 15 years reveal no pervasive extinction of Malagasy amphibians resulting from disease or other agents, as has been reported in some other areas of the world.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75394/1/j.1523-1739.2005.00249.x.pd
Xirp Proteins Mark Injured Skeletal Muscle in Zebrafish
Myocellular regeneration in vertebrates involves the proliferation of activated progenitor or dedifferentiated myogenic cells that have the potential to replenish lost tissue. In comparison little is known about cellular repair mechanisms within myocellular tissue in response to small injuries caused by biomechanical or cellular stress. Using a microarray analysis for genes upregulated upon myocellular injury, we identified zebrafish Xin-actin-binding repeat-containing protein1 (Xirp1) as a marker for wounded skeletal muscle cells. By combining laser-induced micro-injury with proliferation analyses, we found that Xirp1 and Xirp2a localize to nascent myofibrils within wounded skeletal muscle cells and that the repair of injuries does not involve cell proliferation or Pax7+ cells. Through the use of Xirp1 and Xirp2a as markers, myocellular injury can now be detected, even though functional studies indicate that these proteins are not essential in this process. Previous work in chicken has implicated Xirps in cardiac looping morphogenesis. However, we found that zebrafish cardiac morphogenesis is normal in the absence of Xirp expression, and animals deficient for cardiac Xirp expression are adult viable. Although the functional involvement of Xirps in developmental and repair processes currently remains enigmatic, our findings demonstrate that skeletal muscle harbours a rapid, cell-proliferation-independent response to injury which has now become accessible to detailed molecular and cellular characterizations
Phoenix Is Required for Mechanosensory Hair Cell Regeneration in the Zebrafish Lateral Line
In humans, the absence or irreversible loss of hair cells, the sensory mechanoreceptors in the cochlea, accounts for a large majority of acquired and congenital hearing disorders. In the auditory and vestibular neuroepithelia of the inner ear, hair cells are accompanied by another cell type called supporting cells. This second cell population has been described as having stem cell-like properties, allowing efficient hair cell replacement during embryonic and larval/fetal development of all vertebrates. However, mammals lose their regenerative capacity in most inner ear neuroepithelia in postnatal life. Remarkably, reptiles, birds, amphibians, and fish are different in that they can regenerate hair cells throughout their lifespan. The lateral line in amphibians and in fish is an additional sensory organ, which is used to detect water movements and is comprised of neuroepithelial patches, called neuromasts. These are similar in ultra-structure to the inner ear's neuroepithelia and they share the expression of various molecular markers. We examined the regeneration process in hair cells of the lateral line of zebrafish larvae carrying a retroviral integration in a previously uncharacterized gene, phoenix (pho). Phoenix mutant larvae develop normally and display a morphologically intact lateral line. However, after ablation of hair cells with copper or neomycin, their regeneration in pho mutants is severely impaired. We show that proliferation in the supporting cells is strongly decreased after damage to hair cells and correlates with the reduction of newly formed hair cells in the regenerating phoenix mutant neuromasts. The retroviral integration linked to the phenotype is in a novel gene with no known homologs showing high expression in neuromast supporting cells. Whereas its role during early development of the lateral line remains to be addressed, in later larval stages phoenix defines a new class of proteins implicated in hair cell regeneration
Silver Nanoparticle Effects on Stream Periphyton During Short-Term Exposures
Silver nanoparticles (AgNP) are increasingly used as antimicrobials in consumer products. Subsequently released into aquatic environments, they are likely to come in contact with microbial communities like periphyton, which plays a key role as a primary producer in stream ecosystems. At present, however, very little is known about the effects of nanoparticles on processes mediated by periphyton communities. We assessed the effects of citrate-coated silver nanoparticles and silver ions (dosed as AgNO3) on five functional end points reflecting community and ecosystem-level processes in periphyton: photosynthetic yield, respiration potential, and the activity of three extracellular enzymes. After 2 h of exposure in experimental microcosms, AgNP and AgNO3 inhibited respiration and photosynthesis of periphyton and the activities of two of the three extracellular enzymes. Addition of a chelating ligand that complexes free silver ions indicated that, in most cases, toxicity of AgNP suspensions was caused by Ag(I) dissolved from the particles. However, these suspensions inhibited one of the extracellular enzymes (leucine aminopeptidase), pointing to a specific nanoparticle effect independent of the dissolved Ag(I). Thus, our results show that both silver nanoparticles and silver ions have potential to disrupt basic metabolic functions and enzymatic resource acquisition of stream periphyton
The recovery of aerosol-sized microplastics in highly refractory vegetal matrices for identification by automated Raman microspectroscopy
International audienceOmbrotrophic peatlands are fed uniquely by atmospheric inputs and therefore have much potential as temporal archives of atmospheric microplastic (MP) deposition, yet the recovery and detection of MP within an almost purely organic matrix is challenging. This study presents a novel peat digestion protocol using sodium hypochlorite (NaClO) as a reagent for biogenic matrix removal. NaClO is more efficient than hydrogen peroxide (H2O2). By using purged air-assisted digestion, NaClO (50 vol%) reached 99% matrix digestion compared with 28% and 75% by H2O2 (30 vol%) and Fenton's reagent, respectively. At a concentration of 50 vol% NaClO did however chemically disintegrate small amounts (<10 mass %) of polyethylene terephthalate (PET) and polyamide (PA) fragments in the millimeter size range. Observation of PA6 in natural peat samples, while not found in the procedural blanks, questions whether PA is fully disintegrated by NaClO. The protocol was applied to three commercial sphagnum moss test samples, in which MP particles in the range of 0.8-65.4 μm were detected by Raman microspectroscopy. The MP mass% was determined at 0.012% corresponding to 129 thousand MP particles/g, of which 62% were smaller than 5 μm and 80% were smaller than 10 μm, yet were accountable for only 0.4% (500 ng) and 3.2% (4 μg) of the total mass of MP, respectively. These findings underline the importance of the identification of particles Ø < 5 μm when investigating atmospheric MP deposition. The MP counts were corrected for MP recovery loss and procedural blank contamination. MP spike recovery following the full protocol was estimated at 60%. The protocol offers an efficient way of isolating and pre-concentrating most aerosol sized MPs in large quantities of refractory vegetal matrices and enables the automated μRaman scanning of thousands of particles at a spatial resolution on the order of 1 μm