20 research outputs found
Gene therapy for primary immune deficiencies: a Canadian perspective
The use of gene therapy (GT) for the treatment of primary immune deficiencies (PID) including severe combined immune deficiency (SCID) has progressed significantly in the recent years. In particular, long-term studies have shown that adenosine deaminase (ADA) gene delivery into ADA-deficient hematopoietic stem cells that are then transplanted into the patients corrects the abnormal function of the ADA enzyme, which leads to immune reconstitution. In contrast, the outcome was disappointing for patients with X-linked SCID, WiskottâAldrich syndrome and chronic granulomatous disease who received GT followed by autologous gene corrected transplantations, as many developed hematological malignancies. The malignancies were attributed to the predilection of the viruses used for gene delivery to integrated at oncogenic areas. The availability of safer and more efficient self-inactivating lentiviruses for gene delivery has reignited the interest in GT for many PID that are now in various stages of pre-clinical studies and clinical trials. Moreover, advances in early diagnosis of PID and gene editing technology coupled with enhanced abilities to generate and manipulate stem cells ex vivo are expected to further contribute to the benefit of GT for PID. Here we review the past, the present and the future of GT for PID, with particular emphasis on the Canadian perspective
Intrathymic transplantation of bone marrow-derived progenitors provides long-term thymopoiesis
The sustained differentiation of T cells in the thymus cannot be maintained by resident intrathymic (IT) precursors and requires that progenitors be replenished from the bone marrow (BM). In patients with severe combined immunodeficiency (SCID) treated by hematopoietic stem cell transplantation, late T-cell differentiation defects are thought to be due to an insufficient entry of donor BM progenitors into the thymus. Indeed, we find that the intravenous injection of BM progenitors into nonconditioned ζ-chainâassociated protein kinase 70 (ZAP-70)âdeficient mice with SCID supports short- but not long-term thymopoiesis. Remarkably, we now show that the IT administration of these progenitors produces a significant level of donor-derived thymopoiesis for more than 6 months after transplantation. In contrast to physiologic thymopoiesis, long-term donor thymopoiesis was not due to the continued recruitment of progenitors from the BM. Rather, IT transplantation resulted in the unique generation of a large population of early c-Kit(high) donor precursors within the thymus. These ZAP-70âdeficient mice that received an IT transplant had a significantly increased prothymocyte niche compared with their untreated counterparts; this phenotype was associated with the generation of a medulla. Thus, IT administration of BM progenitors results in the filling of an expanded precursor niche and may represent a strategy for enhancing T-cell differentiation in patients with SCID
NextGenAAV: a mix of organic chemistry and vectorology
Conference on Changing the Face of Modern Medicine - Stem Cell and Gene Therapy, Lausanne, SWITZERLAND, OCT 16-19, 201
NextGenAAV: a mix of organic chemistry and vectorology
Conference on Changing the Face of Modern Medicine - Stem Cell and Gene Therapy, Lausanne, SWITZERLAND, OCT 16-19, 201
T-cell receptor-induced phosphorylation of the zeta chain is efficiently promoted by ZAP-70 but not Syk
International audienceEngagement of the T-cell receptor (TCR) results in the activation of Lck/Fyn and ZAP-70/Syk tyrosine kinases. Lck-mediated tyrosine phosphorylation of signaling motifs (ITAMs) in the CD3-zeta subunits of the TCR is an initial step in the transduction of signaling cascades. However, zeta phosphorylation is also promoted by ZAP-70, as TCR-induced zeta phosphorylation is defective in ZAP-70-deficient T cells. We show that this defect is corrected by stable expression of ZAP-70, but not Syk, in primary and transformed T cells. Indeed, these proteins are differentially coupled to the TCR with a 5- to 10-fold higher association of ZAP-70 with zeta as compared to Syk. Low-level Syk-zeta binding is associated with significantly less Lck coupled to the TCR. Moreover, diminished coupling of Lck to zeta correlates with a poor phosphorylation of the positive regulatory tyr352 residue of Syk. Thus, recruitment of Lck into the TCR complex with subsequent zeta chain phosphorylation is promoted by ZAP-70 but not Syk. Importantly, the presence of ZAP-70 positively regulates the TCR-induced tyrosine phosphorylation of Syk. The interplay between Syk and ZAP-70 in thymocytes, certain T cells, and B-chronic lymphocytic leukemia cells, in which they are coexpressed, will therefore modulate the amplitude of antigen-mediated receptor signaling
Effect of retinol dehydrogenase gene transfer in a novel rat model of Stargardt disease
International audienceDysfunction of the ATPase-binding Cassette Transporter protein (ABCA4) can lead to early onset macular degeneration, in particular to Stargardt disease. To enable translational research into this form of blindness, we evaluated the effect of Cas9-induced disruptions of the ABCA4 gene to potentially generate new transgenic rat models of the disease. We show that deletion of the short exon preceding the second nucleotide-binding domain is sufficient to drastically knock down protein levels and results in accumulation of retinoid dimers similar to that associated with Stargardt disease. Overexpression of the retinol dehydrogenase enzymes RDH8 and RDH12 can to a limited extent offset the increase in the bisretinoid levels in the Abca4(Ex42-/)- KO rats possibly by restricting the time window in which retinal can dimerize before being reduced to retinol. However, in vivo imaging shows that overexpression of RDH8 can induce retinal degeneration. This may be due to the depletion in the outer segment of the cofactor NADPH, needed for RDH function. The translational potential of RDH therapy as well as other Stargardt disease therapies can be tested using the Abca4 knockdown rat model
TRPC1 and TRPC3 involvement in DMD physiopathology and as potential targets for treatment in complement to rAAV-microdystrophin
International audienc
Intrathymic administration of hematopoietic progenitor cells enhances T cell reconstitution in ZAP-70 severe combined immunodeficiency
Patients with severe combined immunodeficiency (SCID) present with opportunistic infections that are almost universally fatal in infancy. The mainstay treatment for these patients is allogeneic hematopoietic stem cell (HSC) transplantation, but sustained polyclonal T cell reconstitution is too often unsatisfactory. Although transplantation is conventionally performed by i.v. administration of HSC, we hypothesized that an intrathymic strategy would be superior. Indeed, several progenitor cell populations are incapable of homing to the thymus, the major site of T cell differentiation, and it appears that there are extensive time periods during which the thymus is refractory to progenitor cell import. To test this hypothesis, nonconditioned infant ZAP-70-deficient SCID mice were intrathymically injected with WT bone marrow progenitor cells, a procedure accomplished without surgical intervention. Upon intrathymic HSC injection, there was a more rapid T cell differentiation, with mature thymocytes detected by 4 weeks after transplantation. Intrathymic injection of HSC also resulted in significantly higher numbers of peripheral T cells, increased percentages of naĂŻve T cells, and more diverse T cell receptor repertoires. Moreover, T cell reconstitution after intrathymic transplantation was obtained after injection of 10-fold fewer donor HSC. Thus, this intrathymic transplantation approach may improve the outcome of SCID patients by enhancing T cell reconstitution
P.20.13 Gene therapy of Duchenne Muscular Dystrophy using rAAV vectors: Exon skipping and microdystrophin approaches in GRMD dogs
International audienc
Gene therapy of Duchenne muscular dystrophy using rAAV vectors: Exon skipping and microdystrophin approaches in GRMD dogs
International audienc