15 research outputs found
Dynamical properties of the unitary Fermi gas: collective modes and shock waves
We discuss the unitary Fermi gas made of dilute and ultracold atoms with an
infinite s-wave inter-atomic scattering length. First we introduce an efficient
Thomas-Fermi-von Weizsacker density functional which describes accurately
various static properties of the unitary Fermi gas trapped by an external
potential. Then, the sound velocity and the collective frequencies of
oscillations in a harmonic trap are derived from extended superfluid
hydrodynamic equations which are the Euler-Lagrange equations of a
Thomas-Fermi-von Weizsacker action functional. Finally, we show that this
amazing Fermi gas supports supersonic and subsonic shock waves.Comment: 9 pages, 3 figures, invited talk at the International Workshop
"Critical Stability 2011" (Erice, October 2011), to be published in the
journal Few Body System
Fermionic superfluidity: From high Tc superconductors to ultracold Fermi gases
We present a pairing fluctuation theory which self-consistently incorporates
finite momentum pair excitations in the context of BCS--Bose-Einstein
condensation (BEC) crossover, and we apply this theory to high
superconductors and ultracold Fermi gases. There are strong similarities
between Fermi gases in the unitary regime and high Tc superconductors. Here we
address key issues of common interest, especially the pseudogap. In the Fermi
gases we summarize recent experiments including various phase diagrams (with
and without population imbalance), as well as evidence for a pseudogap in
thermodynamic and other experiments.Comment: Expanded version, invited talk at the 5th International Conference on
Complex Matter -- Stripes 2006, 6 pages, 6 figure
Theory of output coupling for trapped fermionic atoms
We develop a dynamic theory of output coupling, for fermionic atoms initially
confined in a magnetic trap. We consider an exactly soluble one-dimensional
model, with a spatially localized delta-type coupling between the atoms in the
trap and a continuum of free-particle external modes. Two important special
cases are considered for the confinement potential: the infinite box and the
harmonic oscillator. We establish that in both cases a bound state of the
coupled system appears for any value of the coupling constant, implying that
the trap population does not vanish in the infinite-time limit. For weak
coupling, the energy spectrum of the outgoing beam exhibits peaks corresponding
to the initially occupied energy levels in the trap; the height of these peaks
increases with the energy. As the coupling gets stronger, the energy spectrum
is displaced towards dressed energies of the fermions in the trap. The
corresponding dressed states result from the coupling between the unperturbed
fermionic states in the trap, mediated by the coupling between these states and
the continuum. In the strong-coupling limit, there is a reinforcement of the
lowest-energy dressed mode, which contributes to the energy spectrum of the
outgoing beam more strongly than the other modes. This effect is especially
pronounced for the one-dimensional box, which indicates that the efficiency of
the mode-reinforcement mechanism depends on the steepness of the confinement
potential. In this case, a quasi-monochromatic anti-bunched atomic beam is
obtained. Results for a bosonic sample are also shown for comparison.Comment: 16 pages, 7 figures, added discussion on time-dependent spectral
distribution and corresponding figur
Thermodynamic Measurements in a Strongly Interacting Fermi Gas
We conduct a series of measurements on the thermodynamic properties of an
optically-trapped strongly interacting Fermi gas, including the energy ,
entropy , and sound velocity . Our model-independent measurements of
and enable a precision study of the finite temperature thermodynamics. The
data are directly compared to several recent predictions. The
temperature in both the superfluid and normal fluid regime is obtained from the
fundamental thermodynamic relation by parameterizing
the data. Our data are also used to experimentally calibrate the
endpoint temperatures obtained for adiabatic sweeps of the magnetic field
between the ideal and strongly interacting regimes. This enables the first
experimental calibration of the temperature scale used in experiments on
fermionic pair condensation. Our calibration shows that the ideal gas
temperature measured for the onset of pair condensation corresponds closely to
the critical temperature estimated in the strongly interacting regime from the
fits to our data. The results are in very good agreement with recent
predictions. Finally, using universal thermodynamic relations, we estimate the
chemical potential and heat capacity of the trapped gas from the data.Comment: 29 pages, 12 figures. To appear in JLTP online, and in the January,
2009 volum