2,448 research outputs found
Urban flooding in Britain:An approach to comparing ancient and contemporary flood exposure
Using modified UK Environment Agency Flood Estimation Handbook techniques, inundation extent and likely flood hydrographs for 0.1% probability annual return periods are compared for twelve Roman town sites in the UK, both at the present day and for simulated Roman catchment conditions. Eight of the study sites appear to have suffered minimal urban flood liability as occupied in the Roman period. The exceptions were Canterbury, York, Leicester, and Chichester. It is reasonable to expect flood characteristics to have changed subsequently in response to transformations in catchment land use, urban expansion, wetland reclamation, and floodway engineering. However, modelling results suggest limited differences in flood flows attributable to such factors. Greater present-day urban damage liability essentially results from floodplain urban extension. There are also contrasts between sites: those Roman towns lying on floodplains themselves, rather than on slightly elevated terraces (Canterbury, Chichester), are dominated by groundwater regimes with attenuated flood peaks. Taken together, these results suggest some Roman awareness of the actualities of urban flood liability at the time. Site sensitivity has not been carried forward as urban expansion has flourished, especially from the nineteenth century with suburban and industrial expansion. The straightforward mapping approach here suggested should in future take account of multiple century-scale hydroclimatic changes, morphological river channel and floodplain transformations over similar time periods, and on-going improvements to inundation modelling
Peer support for patients with type 2 diabetes: cluster randomised controlled trial
Objective To test the effectiveness of peer support for patients with type 2 diabetes
Intramolecular vibronic dynamics in molecular solids: C60
Vibronic coupling in solid C60 has been investigated with a combination of resonant photoemission spectroscopy (RPES) and resonant inelastic x-ray scattering (RIXS). Excitation as a function of energy within the lowest unoccupied molecular orbital resonance yielded strong oscillations in intensity and dispersion in RPES, and a strong inelastic component in RIXS. Reconciling these two observations establishes that vibronic coupling in this core hole excitation leads to predominantly inelastic scattering and localization of the excited vibrations on the molecule on a femtosecond time scale. The coupling extends throughout the widths of the frontier valence bands.
All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators
We review our recent work on tunable, ultrahigh quality factor
whispering-gallery-mode bottle microresonators and highlight their applications
in nonlinear optics and in quantum optics experiments. Our resonators combine
ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume,
and near-lossless fiber coupling, with a simple and customizable mode structure
enabling full tunability. We study, theoretically and experimentally, nonlinear
all-optical switching via the Kerr effect when the resonator is operated in an
add-drop configuration. This allows us to optically route a single-wavelength
cw optical signal between two fiber ports with high efficiency. Finally, we
report on progress towards strong coupling of single rubidium atoms to an
ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B.
Changes according to referee suggestions: minor corrections to some figures
and captions, clarification of some points in the text, added references,
added new paragraph with results on atom-resonator interactio
Decomposable representations and Lagrangian submanifolds of moduli spaces associated to surface groups
In this paper, we construct a Lagrangian submanifold of the moduli space
associated to the fundamental group of a punctured Riemann surface (the space
of representations of this fundamental group into a compact connected Lie
group). This Lagrangian submanifold is obtained as the fixed-point set of an
anti-symplectic involution defined on the moduli space. The notion of
decomposable representation provides a geometric interpretation of this
Lagrangian submanifold
Observation and Modeling of the Solar Transition Region: II. Solutions of the Quasi-Static Loop Model
In the present work we undertake a study of the quasi-static loop model and
the observational consequences of the various solutions found. We obtain the
most general solutions consistent with certain initial conditions. Great care
is exercised in choosing these conditions to be physically plausible (motivated
by observations). We show that the assumptions of previous quasi-static loop
models, such as the models of Rosner, Tucker and Vaiana (1978) and Veseckey,
Antiochos and Underwood (1979), are not necessarily valid for small loops at
transition region temperatures. We find three general classes of solutions for
the quasi-static loop model, which we denote, radiation dominated loops,
conduction dominated loops and classical loops. These solutions are then
compared with observations. Departures from the classical scaling law of RTV
are found for the solutions obtained. It is shown that loops of the type that
we model here can make a significant contribution to lower transition region
emission via thermal conduction from the upper transition region.Comment: 30 pages, 3 figures, Submitted to ApJ, Microsoft Word File 6.0/9
Low-cost electronic sensors for environmental research: pitfalls and opportunities
Repeat observations underpin our understanding of environmental processes, but financial constraints often limit scientists’ ability to deploy dense networks of conventional commercial instrumentation. Rapid growth in the Internet-Of-Things (IoT) and the maker movement is paving the way for low-cost electronic sensors to transform global environmental monitoring. Accessible and inexpensive sensor construction is also fostering exciting opportunities for citizen science and participatory research. Drawing on 6 years of developmental work with Arduino-based open-source hardware and software, extensive laboratory and field testing, and incor- poration of such technology into active research programmes, we outline a series of successes, failures and lessons learned in designing and deploying environmental sensors. Six case studies are presented: a water table depth probe, air and water quality sensors, multi-parameter weather stations, a time-sequencing lake sediment trap, and a sonic anemometer for monitoring sand transport. Schematics, code and purchasing guidance to reproduce our sensors are described in the paper, with detailed build instructions hosted on our King’s College London Geography Environmental Sensors Github repository and the FreeStation project website. We show in each case study that manual design and construction can produce research-grade scientific instrumentation (mean bias error for calibrated sensors –0.04 to 23%) for a fraction of the conventional cost, provided rigorous, sensor-specific calibration and field testing is conducted. In sharing our collective experiences with build-it- yourself environmental monitoring, we intend for this paper to act as a catalyst for physical geographers and the wider environmental science community to begin incorporating low-cost sensor development into their research activities. The capacity to deploy denser sensor networks should ultimately lead to superior envi- ronmental monitoring at the local to global scales
Truncated and Helix-Constrained Peptides with High Affinity and Specificity for the cFos Coiled-Coil of AP-1
Protein-based therapeutics feature large interacting surfaces. Protein folding endows structural stability to localised surface epitopes, imparting high affinity and target specificity upon interactions with binding partners. However, short synthetic peptides with sequences corresponding to such protein epitopes are unstructured in water and promiscuously bind to proteins with low affinity and specificity. Here we combine structural stability and target specificity of proteins, with low cost and rapid synthesis of small molecules, towards meeting the significant challenge of binding coiled coil proteins in transcriptional regulation. By iteratively truncating a Jun-based peptide from 37 to 22 residues, strategically incorporating i-->i+4 helix-inducing constraints, and positioning unnatural amino acids, we have produced short, water-stable, alpha-helical peptides that bind cFos. A three-dimensional NMR-derived structure for one peptide (24) confirmed a highly stable alpha-helix which was resistant to proteolytic degradation in serum. These short structured peptides are entropically pre-organized for binding with high affinity and specificity to cFos, a key component of the oncogenic transcriptional regulator Activator Protein-1 (AP-1). They competitively antagonized the cJun–cFos coiled-coil interaction. Truncating a Jun-based peptide from 37 to 22 residues decreased the binding enthalpy for cJun by ~9 kcal/mol, but this was compensated by increased conformational entropy (TDS ≤ 7.5 kcal/mol). This study demonstrates that rational design of short peptides constrained by alpha-helical cyclic pentapeptide modules is able to retain parental high helicity, as well as high affinity and specificity for cFos. These are important steps towards small antagonists of the cJun-cFos interaction that mediates gene transcription in cancer and inflammatory diseases
Searching for the earliest galaxies in the 21 cm forest
We use a model developed by Xu et al. (2010) to compute the 21 cm line
absorption signatures imprinted by star-forming dwarf galaxies (DGs) and
starless minihalos (MHs). The method, based on a statistical comparison of the
equivalent width (W_\nu) distribution and flux correlation function, allows us
to derive a simple selection criteria for candidate DGs at very high (z >= 8)
redshift. We find that ~ 18% of the total number of DGs along a line of sight
to a target radio source (GRB or quasar) can be identified by the condition
W_\nu < 0; these objects correspond to the high-mass tail of the DG
distribution at high redshift, and are embedded in large HII regions. The
criterion W_\nu > 0.37 kHz instead selects ~ 11% of MHs. Selected candidate DGs
could later be re-observed in the near-IR by the JWST with high efficiency,
thus providing a direct probe of the most likely reionization sources.Comment: 8 pages, 3 figures. Accepted for publication in Science in China
Series
Effects of ecstasy/polydrug use on memory for associative information
Rationale
Associative learning underpins behaviours that are fundamental to the everyday functioning of the individual. Evidence pointing to learning deficits in recreational drug users merits further examination.
Objectives
A word pair learning task was administered to examine associative learning processes in ecstasy/polydrug users.
Methods
After assignment to either single or divided attention conditions, 44 ecstasy/polydrug users and 48 non-users were presented with 80 word pairs at encoding. Following this, four types of stimuli were presented at the recognition phase: the words as originally paired (old pairs), previously presented words in different pairings (conjunction pairs), old words paired with new words, and pairs of new words (not presented previously). The task was to identify which of the stimuli were intact old pairs.
Results
Ecstasy/ploydrug users produced significantly more false-positive responses overall compared to non-users. Increased long-term frequency of ecstasy use was positively associated with the propensity to produce false-positive responses. It was also associated with a more liberal signal detection theory decision criterion value. Measures of long term and recent cannabis use were also associated with these same word pair learning outcome measures. Conjunction word pairs, irrespective of drug use, generated the highest level of false-positive responses and significantly more false-positive responses were made in the divided attention condition compared to the single attention condition.
Conclusions
Overall, the results suggest that long-term ecstasy exposure may induce a deficit in associative learning and this may be in part a consequence of users adopting a more liberal decision criterion value
- …