664 research outputs found
Chemsex, Anxiety and Depression Among Gay, Bisexual and Other Men Who have Sex with Men Living with HIV
Funding Research did not receive any specific funding.Peer reviewedPublisher PD
Chemsex, Anxiety and Depression Among Gay, Bisexual and Other Men Who have Sex with Men Living with HIV
Chemsex is common among gay, bisexual and other men who have sex with men (gbMSM). Although not always categorised as problematic, a link with psychological distress has been reported and might be exacerbated amongst gbMSM living with HIV, as HIV has been associated with anxiety and depression. A cross-sectional online survey of gbMSM living with HIV (n = 359) was performed incorporating the Hospital Anxiety and Depression Scale and sociodemographic variables including, HIV characteristics, chemsex and sexual behaviours. Logistic regression analysis was used to find associations with anxiety or depression. Many participants engaged in chemsex (48.5%, n = 174). Chemsex was associated with lower odds of depression (aOR 0.45, 95% CI 0.23–0.85) and not associated with anxiety (aOR 0.66, CI 0.40–1.09). Although chemsex is a public health concern; we found it was associated with lower levels of depression in gbMSM living with HIV. However, causal inference is not possible, as gbMSM with higher levels of depression might engage in chemsex less
Money and mental wellbeing : a longitudinal study of medium-sized lottery wins
One of the famous questions in social science is whether money makes people happy. We offer new evidence by using longitudinal data on a random sample of Britons who receive medium-sized lottery wins of between £1000 and £120,000 (that is, up to approximately US$ 200,000). When compared to two control groups – one with no wins and the other with small wins – these individuals go on eventually to exhibit significantly better psychological health. Two years after a lottery win, the average measured improvement in mental wellbeing is 1.4 GHQ points
Cutting Through the Discussion on Caesarean Delivery: Birth Practices as Social Practices
Women are finding appeal in (or, at minimum, a lower level of resistance to) caesarean delivery despite the health risks that it poses, and I investigate how this decision figures into a broader pattern of women\u27s gender socialisation within a culture that is deeply anxious about women\u27s bodies. I review scholarship on caesarean delivery, and use social practice theory to map possible contact points between theories of embodiment, a sociology of gender, and the specific practice of caesarean section. I consider caesarean delivery as a component of a social practice, and adopt a practice framework to analyze women\u27s motivation for selecting (or consenting to) caesarean delivery. I detail the materiality of the hospital, the medicalisation of women\u27s bodies, and women\u27s antagonistic body relationship to reveal some of the less immediately apparent reasons why caesarean delivery has been normalised and rendered invisible as part of the pattern of modern childbirth. Interventions to address the further escalation of caesarean delivery might consider how this decision aligns with other social practices. I conclude that activism addressing the social conditions that make caesarean delivery so attractive may radiate out to other aspects of women\u27s lives where the practices of normative femininity have proven equally restrictive
Search for Gravitational Wave Bursts from Soft Gamma Repeaters
We present the results of a LIGO search for short-duration gravitational
waves (GWs) associated with Soft Gamma Repeater (SGR) bursts. This is the first
search sensitive to neutron star f-modes, usually considered the most efficient
GW emitting modes. We find no evidence of GWs associated with any SGR burst in
a sample consisting of the 27 Dec. 2004 giant flare from SGR 1806-20 and 190
lesser events from SGR 1806-20 and SGR 1900+14 which occurred during the first
year of LIGO's fifth science run. GW strain upper limits and model-dependent GW
emission energy upper limits are estimated for individual bursts using a
variety of simulated waveforms. The unprecedented sensitivity of the detectors
allows us to set the most stringent limits on transient GW amplitudes published
to date. We find upper limit estimates on the model-dependent isotropic GW
emission energies (at a nominal distance of 10 kpc) between 3x10^45 and 9x10^52
erg depending on waveform type, detector antenna factors and noise
characteristics at the time of the burst. These upper limits are within the
theoretically predicted range of some SGR models.Comment: 6 pages, 1 Postscript figur
First LIGO search for gravitational wave bursts from cosmic (super)strings
We report on a matched-filter search for gravitational wave bursts from
cosmic string cusps using LIGO data from the fourth science run (S4) which took
place in February and March 2005. No gravitational waves were detected in 14.9
days of data from times when all three LIGO detectors were operating. We
interpret the result in terms of a frequentist upper limit on the rate of
gravitational wave bursts and use the limits on the rate to constrain the
parameter space (string tension, reconnection probability, and loop sizes) of
cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR
All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data
We report on an all-sky search with the LIGO detectors for periodic
gravitational waves in the frequency range 50--1100 Hz and with the frequency's
time derivative in the range -5.0E-9 Hz/s to zero. Data from the first eight
months of the fifth LIGO science run (S5) have been used in this search, which
is based on a semi-coherent method (PowerFlux) of summing strain power.
Observing no evidence of periodic gravitational radiation, we report 95%
confidence-level upper limits on radiation emitted by any unknown isolated
rotating neutron stars within the search range. Strain limits below 1.E-24 are
obtained over a 200-Hz band, and the sensitivity improvement over previous
searches increases the spatial volume sampled by an average factor of about 100
over the entire search band. For a neutron star with nominal equatorial
ellipticity of 1.0E-6, the search is sensitive to distances as great as 500
pc--a range that could encompass many undiscovered neutron stars, albeit only a
tiny fraction of which would likely be rotating fast enough to be accessible to
LIGO. This ellipticity is at the upper range thought to be sustainable by
conventional neutron stars and well below the maximum sustainable by a strange
quark star.Comment: 6 pages, 1 figur
Search for gravitational waves from binary inspirals in S3 and S4 LIGO data
We report on a search for gravitational waves from the coalescence of compact
binaries during the third and fourth LIGO science runs. The search focused on
gravitational waves generated during the inspiral phase of the binary
evolution. In our analysis, we considered three categories of compact binary
systems, ordered by mass: (i) primordial black hole binaries with masses in the
range 0.35 M(sun) < m1, m2 < 1.0 M(sun), (ii) binary neutron stars with masses
in the range 1.0 M(sun) < m1, m2 < 3.0 M(sun), and (iii) binary black holes
with masses in the range 3.0 M(sun)< m1, m2 < m_(max) with the additional
constraint m1+ m2 < m_(max), where m_(max) was set to 40.0 M(sun) and 80.0
M(sun) in the third and fourth science runs, respectively. Although the
detectors could probe to distances as far as tens of Mpc, no gravitational-wave
signals were identified in the 1364 hours of data we analyzed. Assuming a
binary population with a Gaussian distribution around 0.75-0.75 M(sun), 1.4-1.4
M(sun), and 5.0-5.0 M(sun), we derived 90%-confidence upper limit rates of 4.9
yr^(-1) L10^(-1) for primordial black hole binaries, 1.2 yr^(-1) L10^(-1) for
binary neutron stars, and 0.5 yr^(-1) L10^(-1) for stellar mass binary black
holes, where L10 is 10^(10) times the blue light luminosity of the Sun.Comment: 12 pages, 11 figure
All-sky search for periodic gravitational waves in LIGO S4 data
We report on an all-sky search with the LIGO detectors for periodic
gravitational waves in the frequency range 50-1000 Hz and with the frequency's
time derivative in the range -1.0E-8 Hz/s to zero. Data from the fourth LIGO
science run (S4) have been used in this search. Three different semi-coherent
methods of transforming and summing strain power from Short Fourier Transforms
(SFTs) of the calibrated data have been used. The first, known as "StackSlide",
averages normalized power from each SFT. A "weighted Hough" scheme is also
developed and used, and which also allows for a multi-interferometer search.
The third method, known as "PowerFlux", is a variant of the StackSlide method
in which the power is weighted before summing. In both the weighted Hough and
PowerFlux methods, the weights are chosen according to the noise and detector
antenna-pattern to maximize the signal-to-noise ratio. The respective
advantages and disadvantages of these methods are discussed. Observing no
evidence of periodic gravitational radiation, we report upper limits; we
interpret these as limits on this radiation from isolated rotating neutron
stars. The best population-based upper limit with 95% confidence on the
gravitational-wave strain amplitude, found for simulated sources distributed
isotropically across the sky and with isotropically distributed spin-axes, is
4.28E-24 (near 140 Hz). Strict upper limits are also obtained for small patches
on the sky for best-case and worst-case inclinations of the spin axes.Comment: 39 pages, 41 figures An error was found in the computation of the C
parameter defined in equation 44 which led to its overestimate by 2^(1/4).
The correct values for the multi-interferometer, H1 and L1 analyses are 9.2,
9.7, and 9.3, respectively. Figure 32 has been updated accordingly. None of
the upper limits presented in the paper were affecte
- …