2,857 research outputs found

    Mental Health Outcomes during Colorectal Cancer Survivorship: A Review of the Literature

    Get PDF
    Objective This article reviews literature on adults’ mental health outcomes during acute and long-term colorectal cancer (CRC) survivorship. Methods We identified articles that included at least one measure of psychological symptoms or mental quality of life or well-being through a search of databases (CINAHL, MEDLINE, PsycINFO, and PsycARTICLES). Articles were published between January 2004 and April 2015. Results A significant proportion of CRC survivors experience clinically meaningful levels of anxiety and depressive symptoms or reduced mental well-being across the trajectory of the illness. Demographic, medical, and psychosocial predictors of mental health outcomes were identified. However, few studies were theory-driven, and gaps remain in our understanding of risk and protective factors with respect to mental health outcomes, especially during long-term CRC survivorship. Conclusions Theory-driven longitudinal research with larger samples is required to identify subgroups of CRC survivors with different trajectories of psychological adjustment. Such research would assess adjustment as a function of internal resources (e.g., personality, coping) and external resources (e.g., finances, social support) to inform future interventions for CRC survivors

    Academic freedom in Europe: reviewing UNESCO’s recommendation

    Get PDF
    This paper examines the compliance of universities in the European Union with the UNESCO Recommendation concerning the Status of Higher–Education Teaching Personnel, which deals primarily with protection for academic freedom. The paper briefly surveys the European genesis of the modern research university and academic freedom, before evaluating compliance with the UNESCO recommendation on institutional autonomy, academic freedom, university governance and tenure. Following from this, the paper examines the reasons for the generally low level of compliance with the UNESCO Recommendation within the EU states, and considers how such compliance could be improved

    Implementation of Multidimensional Databases with Document-Oriented NoSQL

    Get PDF
    International audienceNoSQL (Not Only SQL) systems are becoming popular due to known advantages such as horizontal scalability and elasticity. In this paper, we study the implementation of data warehouses with document-oriented NoSQL systems. We propose mapping rules that transform the multidimensional data model to logical document-oriented models. We consider three different logical models and we use them to instantiate data warehouses. We focus on data loading, model-to-model conversion and OLAP cuboid computation

    A threshold phenomenon for embeddings of H0mH^m_0 into Orlicz spaces

    Full text link
    We consider a sequence of positive smooth critical points of the Adams-Moser-Trudinger embedding of H0mH^m_0 into Orlicz spaces. We study its concentration-compactness behavior and show that if the sequence is not precompact, then the liminf of the H0mH^m_0-norms of the functions is greater than or equal to a positive geometric constant.Comment: 14 Page

    On the Mean-Field Limit of Bosons with Coulomb Two-Body Interaction

    Full text link
    In the mean-field limit the dynamics of a quantum Bose gas is described by a Hartree equation. We present a simple method for proving the convergence of the microscopic quantum dynamics to the Hartree dynamics when the number of particles becomes large and the strength of the two-body potential tends to 0 like the inverse of the particle number. Our method is applicable for a class of singular interaction potentials including the Coulomb potential. We prove and state our main result for the Heisenberg-picture dynamics of "observables", thus avoiding the use of coherent states. Our formulation shows that the mean-field limit is a "semi-classical" limit.Comment: Corrected typos and included an elementary proof of the Kato smoothing estimate (Lemma 6.1

    Do low surface brightness galaxies have dense disks?

    Full text link
    The disk masses of four low surface brightness galaxies (LSB) were estimated using marginal gravitational stability criterion and the stellar velocity dispersion data which were taken from Pizzella et al., 2008 [1]. The constructed mass models appear to be close to the models of maximal disk. The results show that the disks of LSB galaxies may be significantly more massive than it is usually accepted from their brightnesses. In this case their surface densities and masses appear to be rather typical for normal spirals. Otherwise, unlike the disks of many spiral galaxies, the LSB disks are dynamically overheated.Comment: 14 pages, 10 figures, submitted to Astronomy Report

    Asymptotic stability, concentration, and oscillation in harmonic map heat-flow, Landau-Lifshitz, and Schroedinger maps on R^2

    Get PDF
    We consider the Landau-Lifshitz equations of ferromagnetism (including the harmonic map heat-flow and Schroedinger flow as special cases) for degree m equivariant maps from R^2 to S^2. If m \geq 3, we prove that near-minimal energy solutions converge to a harmonic map as t goes to infinity (asymptotic stability), extending previous work down to degree m = 3. Due to slow spatial decay of the harmonic map components, a new approach is needed for m=3, involving (among other tools) a "normal form" for the parameter dynamics, and the 2D radial double-endpoint Strichartz estimate for Schroedinger operators with sufficiently repulsive potentials (which may be of some independent interest). When m=2 this asymptotic stability may fail: in the case of heat-flow with a further symmetry restriction, we show that more exotic asymptotics are possible, including infinite-time concentration (blow-up), and even "eternal oscillation".Comment: 34 page

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”

    Long-time discrete particle effects versus kinetic theory in the self-consistent single-wave model

    Get PDF
    The influence of the finite number N of particles coupled to a monochromatic wave in a collisionless plasma is investigated. For growth as well as damping of the wave, discrete particle numerical simulations show an N-dependent long time behavior resulting from the dynamics of individual particles. This behavior differs from the one due to the numerical errors incurred by Vlasov approaches. Trapping oscillations are crucial to long time dynamics, as the wave oscillations are controlled by the particle distribution inhomogeneities and the pulsating separatrix crossings drive the relaxation towards thermal equilibrium.Comment: 11 pages incl. 13 figs. Phys. Rev. E, in pres

    Small BGK waves and nonlinear Landau damping

    Full text link
    Consider 1D Vlasov-poisson system with a fixed ion background and periodic condition on the space variable. First, we show that for general homogeneous equilibria, within any small neighborhood in the Sobolev space W^{s,p} (p>1,s<1+(1/p)) of the steady distribution function, there exist nontrivial travelling wave solutions (BGK waves) with arbitrary minimal period and traveling speed. This implies that nonlinear Landau damping is not true in W^{s,p}(s<1+(1/p)) space for any homogeneous equilibria and any spatial period. Indeed, in W^{s,p} (s<1+(1/p)) neighborhood of any homogeneous state, the long time dynamics is very rich, including travelling BGK waves, unstable homogeneous states and their possible invariant manifolds. Second, it is shown that for homogeneous equilibria satisfying Penrose's linear stability condition, there exist no nontrivial travelling BGK waves and unstable homogeneous states in some W^{s,p} (p>1,s>1+(1/p)) neighborhood. Furthermore, when p=2,we prove that there exist no nontrivial invariant structures in the H^{s} (s>(3/2)) neighborhood of stable homogeneous states. These results suggest the long time dynamics in the W^{s,p} (s>1+(1/p)) and particularly, in the H^{s} (s>(3/2)) neighborhoods of a stable homogeneous state might be relatively simple. We also demonstrate that linear damping holds for initial perturbations in very rough spaces, for linearly stable homogeneous state. This suggests that the contrasting dynamics in W^{s,p} spaces with the critical power s=1+(1/p) is a trully nonlinear phenomena which can not be traced back to the linear level
    corecore