898 research outputs found

    The Quiescent Spectrum of the AM CVn star CP Eri

    Get PDF
    We used the 6.5m MMT to obtain a spectrum of the AM CVn star CP Eri in quiescence. The spectrum is dominated by He I emission lines, which are clearly double peaked with a peak-to-peak separation of ~1900 km/s. The spectrum is similar to that of the longer period AM CVn systems GP Com and CE 315, linking the short and the long period AM CVn systems. In contrast with GP Com and CE 315, the spectrum of CP Eri does not show a central 'spike' in the line profiles, but it does show lines of SiII in emission. The presence of these lines indicates that the material being transferred is of higher metallicity than in GP Com and CE 315, which, combined with the low proper motion of the system, probably excludes a halo origin of the progenitor of CP Eri. We constrain the primary mass to M_1>0.27 M_sun and the orbital inclination to 33 degr < i < 80 degr. The presence of the He I lines in emission opens up the possibility for phase resolved spectroscopic studies which allows a determination of the system parameters and a detailed study of helium accretion disks under highly varying circumstances.Comment: 12 pages, 2 figures, accepted for publication in ApJ Letter

    KUV 01584-0939: A Helium-transferring Cataclysmic Variable with an Orbital Period of 10 Minutes

    Full text link
    High speed photometry of KUV 01584-0939 (alias Cet3) shows that is has a period of 620.26 s. Combined with its hydrogen-deficient spectrum, this implies that it is an AM CVn star. The optical modulation is probably a superhump, in which case the orbital period will be slightly shorter than what we have observed.Comment: Published by PASP. See also the latest Early-Release Research Paper website of the PAS

    Neurocognitive factors in sensory restoration of early deafness: a connectome model

    Get PDF
    Progress in biomedical technology (cochlear, vestibular, and retinal implants) has led to remarkable success in neurosensory restoration, particularly in the auditory system. However, outcomes vary considerably, even after accounting for comorbidity-for example, after cochlear implantation, some deaf children develop spoken language skills approaching those of their hearing peers, whereas other children fail to do so. Here, we review evidence that auditory deprivation has widespread effects on brain development, affecting the capacity to process information beyond the auditory system. After sensory loss and deafness, the brain's effective connectivity is altered within the auditory system, between sensory systems, and between the auditory system and centres serving higher order neurocognitive functions. As a result, congenital sensory loss could be thought of as a connectome disease, with interindividual variability in the brain's adaptation to sensory loss underpinning much of the observed variation in outcome of cochlear implantation. Different executive functions, sequential processing, and concept formation are at particular risk in deaf children. A battery of clinical tests can allow early identification of neurocognitive risk factors. Intervention strategies that address these impairments with a personalised approach, taking interindividual variations into account, will further improve outcomes

    The Helium-Rich Cataclysmic Variable ES Ceti

    Full text link
    We report photometry of the helium-rich cataclysmic variable ES Ceti during 2001-2004. The star is roughly stable at V ~ 17.0 and has a light curve dominated by a single period of 620 s, which remains measurably constant over the 3 year baseline. The weight of evidence suggests that this is the true orbital period of the underlying binary, not a "superhump" as initially assumed. We report GALEX ultraviolet magnitudes, which establish a very blue flux distribution (F_nu ~ nu^1.3), and therefore a large bolometric correction. Other evidence (the very strong He II 4686 emission, and a ROSAT detection in soft X-rays) also indicates a strong EUV source, and comparison to helium-atmosphere models suggests a temperature of 130+-10 kK. For a distance of 350 pc, we estimate a luminosity of (0.8-1.7)x10^34 erg/s, yielding a mass accretion rate of (2-4)x10^-9 M_sol/yr onto an assumed 0.7 M_sol white dwarf. This appears to be about as expected for white dwarfs orbiting each other in a 10 minute binary, assuming that mass transfer is powered by gravitational radiation losses. We estimate mean accretion rates for other helium-rich cataclysmic variables, and find that they also follow the expected M-dot ~ P_o^-5 relation. There is some evidence (the lack of superhumps, and the small apparent size of the luminous region) that the mass transfer stream in ES Cet directly strikes the white dwarf, rather than circularizing to form an accretion disk.Comment: PDF, 26 pages, 3 tables, 9 figures; accepted, in press, to appear February 2005, PASP; more info at http://cba.phys.columbia.edu

    Persistence in q-state Potts model: A Mean-Field approach

    Full text link
    We study the Persistence properties of the T=0 coarsening dynamics of one dimensional qq-state Potts model using a modified mean-field approximation (MMFA). In this approximation, the spatial correlations between the interfaces separating spins with different Potts states is ignored, but the correct time dependence of the mean density P(t)P(t) of persistent spins is imposed. For this model, it is known that P(t)P(t) follows a power-law decay with time, P(t)tθ(q)P(t)\sim t^{-\theta(q)} where θ(q)\theta(q) is the qq-dependent persistence exponent. We study the spatial structure of the persistent region within the MMFA. We show that the persistent site pair correlation function P2(r,t)P_{2}(r,t) has the scaling form P2(r,t)=P(t)2f(r/t1/2)P_{2}(r,t)=P(t)^{2}f(r/t^{{1/2}}) for all values of the persistence exponent θ(q)\theta(q). The scaling function has the limiting behaviour f(x)x2θf(x)\sim x^{-2\theta} (x1x\ll 1) and f(x)1f(x)\to 1 (x1x\gg 1). We then show within the Independent Interval Approximation (IIA) that the distribution n(k,t)n(k,t) of separation kk between two consecutive persistent spins at time tt has the asymptotic scaling form n(k,t)=t2ϕg(t,ktϕ)n(k,t)=t^{-2\phi}g(t,\frac{k}{t^{\phi}}) where the dynamical exponent has the form ϕ\phi=max(1/2,θ{1/2},\theta). The behaviour of the scaling function for large and small values of the arguments is found analytically. We find that for small separations ktϕ,n(k,t)P(t)kτk\ll t^{\phi}, n(k,t)\sim P(t)k^{-\tau} where τ\tau=max(2(1θ),2θ2(1-\theta),2\theta), while for large separations ktϕk\gg t^{\phi}, g(t,x)g(t,x) decays exponentially with xx. The unusual dynamical scaling form and the behaviour of the scaling function is supported by numerical simulations.Comment: 11 pages in RevTeX, 10 figures, submitted to Phys. Rev.

    "Remember Everything": things past in Station Island

    Get PDF
    Book synopsis: Seamus Heaney: Poet, Critic, Translator explores the range of Heaney's writing, emphasizing significant intersections in his work - meeting places; spaces between; tradition meeting the contemporary context as life meets death; liminal poetic representations and political divisions; town and woods, absence and presence; inner reality facing external reality; the timely and the transcendent; region and wider world; Irish tradition encountering Polish tradition; the space between modern English and ancient Greek; the meeting of personal and formal in the translation of Beowulf; different times and perceptions meeting problematic memory; Heaney's Leavisite stance in the face of contemporary critical currents; and Heaney's imagination approaching the imaginations of other poets

    Persistence in Cluster--Cluster Aggregation

    Get PDF
    Persistence is considered in diffusion--limited cluster--cluster aggregation, in one dimension and when the diffusion coefficient of a cluster depends on its size ss as D(s)sγD(s) \sim s^\gamma. The empty and filled site persistences are defined as the probabilities, that a site has been either empty or covered by a cluster all the time whereas the cluster persistence gives the probability of a cluster to remain intact. The filled site one is nonuniversal. The empty site and cluster persistences are found to be universal, as supported by analytical arguments and simulations. The empty site case decays algebraically with the exponent θE=2/(2γ)\theta_E = 2/(2 - \gamma). The cluster persistence is related to the small ss behavior of the cluster size distribution and behaves also algebraically for 0γ<20 \le \gamma < 2 while for γ<0\gamma < 0 the behavior is stretched exponential. In the scaling limit tt \to \infty and K(t)K(t) \to \infty with t/K(t)t/K(t) fixed the distribution of intervals of size kk between persistent regions scales as n(k;t)=K2f(k/K)n(k;t) = K^{-2} f(k/K), where K(t)tθK(t) \sim t^\theta is the average interval size and f(y)=eyf(y) = e^{-y}. For finite tt the scaling is poor for ktzk \ll t^z, due to the insufficient separation of the two length scales: the distances between clusters, tzt^z, and that between persistent regions, tθt^\theta. For the size distribution of persistent regions the time and size dependences separate, the latter being independent of the diffusion exponent γ\gamma but depending on the initial cluster size distribution.Comment: 14 pages, 12 figures, RevTeX, submitted to Phys. Rev.

    Fraction of uninfected walkers in the one-dimensional Potts model

    Full text link
    The dynamics of the one-dimensional q-state Potts model, in the zero temperature limit, can be formulated through the motion of random walkers which either annihilate (A + A -> 0) or coalesce (A + A -> A) with a q-dependent probability. We consider all of the walkers in this model to be mutually infectious. Whenever two walkers meet, they experience mutual contamination. Walkers which avoid an encounter with another random walker up to time t remain uninfected. The fraction of uninfected walkers is investigated numerically and found to decay algebraically, U(t) \sim t^{-\phi(q)}, with a nontrivial exponent \phi(q). Our study is extended to include the coupled diffusion-limited reaction A+A -> B, B+B -> A in one dimension with equal initial densities of A and B particles. We find that the density of walkers decays in this model as \rho(t) \sim t^{-1/2}. The fraction of sites unvisited by either an A or a B particle is found to obey a power law, P(t) \sim t^{-\theta} with \theta \simeq 1.33. We discuss these exponents within the context of the q-state Potts model and present numerical evidence that the fraction of walkers which remain uninfected decays as U(t) \sim t^{-\phi}, where \phi \simeq 1.13 when infection occurs between like particles only, and \phi \simeq 1.93 when we also include cross-species contamination.Comment: Expanded introduction with more discussion of related wor

    Coaxial Jets and Sheaths in Wide-Angle-Tail Radio Galaxies

    Get PDF
    We add 20, 6 and 3.6 cm wavelength VLA observations of two WATs, 1231+674 and 1433+553, to existing VLA data at 6 and 20 cm, in order to study the variations of spectral index as a function of position. We apply the spectral tomography process that we introduced in our analysis of 3C67, 3C190 and 3C449. Both spectral tomography and polarization maps indicate that there are two distinct extended components in each source. As in the case of 3C449, we find that each source has a flat spectrum jet surrounded by a steeper spectrum sheath. The steep components tend to be more highly polarized than the flat components. We discuss a number of possibilities for the dynamics of the jet/sheath systems, and the evolution of their relativistic electron populations. While the exact nature of these two coaxial components is still uncertain, their existence requires new models of jets in FR I sources and may also have implications for the dichotomy between FR Is and FR IIs.Comment: 29 text pages plus 13 figures. Scheduled for publication in May 10, 1999 Ap
    corecore