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Persistence in cluster-cluster aggregation

E. K. O. Hellén and M. J. Alava
Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland

~Received 20 November 2001; revised manuscript received 25 April 2002; published 27 August 2002!

Persistence is considered in one-dimensional diffusion-limited cluster-cluster aggregation when the diffusion
coefficient of a cluster depends on its sizes asD(s);sg. The probabilities that a site has been either empty or
covered by a cluster all the time define the empty and filled site persistences. The cluster persistence gives the
probability of a cluster remaining intact. The empty site and cluster persistences are universal whereas the filled
site depends on the initial concentration. Forg.0 the universal persistences decay algebraically with the
exponent 2/(22g). For the empty site case the exponent remains the same forg,0 but the cluster persistence
shows a stretched exponential behavior as it is related to the smalls behavior of the cluster size distribution.
The scaling of the intervals between persistent regions demonstrates the presence of two length scales: the one
related to the distances between clusters and that between the persistent regions.

DOI: 10.1103/PhysRevE.66.026120 PACS number~s!: 05.50.1q, 05.40.2a, 82.40.Bj, 05.70.Ln

I. INTRODUCTION

Persistence in dynamical systems is usually defined as the
probability P(t) that at a fixed point in space a fluctuating
nonequilibrium fieldf(x;t) does not change sign up to time
t @1#; that is, the probability that sgn@f(x;t)2^f(x;t)&# re-
mains unchanged. It was originally introduced for a simple
diffusion process@2,3# and since then has been considered in
spin systems@4–12#, reaction-diffusion systems@13–19#, the
voter model@20,21#, and for interfaces@22–25#. Some ways
of measuring it experimentally exist@26–30#, as well as a
few exact results@31–34#.

In many systems persistence decays algebraically,P(t)
;t2u, with a nontrivial persistence exponentu. The signifi-
cance of the phenomenon stems from the fact that the expo-
nent is not, in general, related to the usual static or dynamic
exponents. This in turn implies that not necessarily all of the
properties of a system are characterized by a single length
scale.

The length scales may not be well separated, which
causes problems if one studies the universality aspects of
persistence. For example, in the diffusion-reaction modelA
1A→B the empty site persistence~probability that a site
has not been visited by a particle! was first claimed to be
nonuniversal@14–16#. Afterward the same authors argued
for universality and claimed the poor separation of two
length scales, the diffusive scaleL D;tz and the persistence
oneL p;tu, to be the origin of the confusion@17,18#. Such
an effect was also suggested to be the reason for the poor
scaling of the interval size distribution between the persistent
regions in the one-dimensionalq-state Potts model@4#. In
neither of these two problems is the length scale separation
evident. It is therefore worthwhile to look for a system where
one could, without controversy, both verify the universality
of persistence and at the same time explicitly demonstrate
the effect of the presence of two length scales.

In this article we study persistence in an aggregation pro-
cess. The particular one used is the one-dimensional
diffusion-limited cluster-cluster aggregation~DLCA! model
@35#, with each cluster diffusing with a size-dependent diffu-

sion coefficient,D(s);sg with g,2. In DLCA one meets
immediately the possibility of defining several persistent
quantities, each of which describes a different aspect of the
aggregation process. An important difference from, e.g., spin
models~Ising, Potts! is the asymmetry between the clusters
and the empty space.

The persistence probabilities considered in this work are
~i! the probability of a cluster to remain unaggregated~clus-
ter persistence! and ~ii ! the probability that a site has been
empty~empty site persistence! and~iii ! filled ~filled site per-
sistence! up to timet. Notice that all these arelocal quanti-
ties. It would be possible to start also from definitions that
involve a global quantity like the average cluster size@36,37#
but these would be harder to study numerically than~i!–~iii !
above, which also have the pleasant aspect of being, possi-
bly, experimentally relevant.

We first discuss the three persistence definitions with size-
independent diffusion coefficients (g50) in order to clarify
the universality of these quantities. The filled site persistence
turns out to be nonuniversal in contrast to the two others.
Thereafter we concentrate on the two universal ones and
consider the influence of size-dependent diffusion (g5” 0).
We discover that for 0,g,2 these decay algebraically with
the same exponent but forg,0 they are unrelated. Finally,
we consider the distribution of persistent regions and inter-
vals between them. As the empty site persistence exponent
uE is twice the dynamic exponentz, the length scalesLD and
Lp become well separated at late times. Before this, how-
ever, the effect of the presence of two length scales can be
nicely demonstrated in the scaling of the interval size distri-
butions.

This paper starts by introducing the model and describing
the quantities of interest in Sec. II. In Sec. III each persis-
tence probability is considered separately. Section IV dis-
cusses the scaling of the region and interval size distribu-
tions. The dependence of the persistent quantities on
concentration and initial conditions is studied by simulations
at the beginning of Sec. V. The end of that section shows the
numerical results for the region and interval size distribu-
tions. Section VI concludes the paper.
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II. MODEL AND QUANTITIES OF INTEREST

The DLCA model is here considered on a one-
dimensional lattice ofL sites with periodic boundary condi-
tions. Initially the lattice is filled up to a concentrationf
such that occupied lattice sites correspond to particles and
sites connected via nearest neighbor occupancy belong to the
same cluster. Each cluster performs a random walk, and
when two clusters collide, they aggregate irreversibly to-
gether. The diffusion coefficient of a cluster of sizes is given
by D(s)5D1sg. D1 sets the time scale and it is irrelevant
regarding the dynamic scaling properties@38–41#. We con-
centrate ong,2 for which the growth of the average cluster
size is algebraic.

The persistence probabilities studied in this work are the
following.

~1! Empty site persistence: the probability that an origi-
nally empty site has never been occupied by a cluster,
PE(t);t2uE.

~2! Filled site persistence: the probability that a site origi-
nally covered by a cluster has been covered by it all the time,
PF(t);t2uF.

~3! Cluster persistence: the probability that a cluster has
not aggregated,PC(t);t2uC.

When the probabilities decay algebraically, one has the
persistence exponentsuE , uF , anduC . The cluster persis-
tence differs from the other persistence definitions since it is
not a quantity defined per a fixed site on the lattice but is a
property associated with each cluster.

In special cases the DLCA model is closely related to
other models, in one dimension. For example, when the clus-
ters are considered to be pointlike particles with ‘‘mass’’s,
the DLCA model becomes equal to the reaction-diffusion
modelAs1As8→As1s8 . Forg50, i.e., when the diffusion is
mass independent, this reduces to coalescing random walkers
A1A→A, which is exactly solvable@42,43#. This may fur-
ther be connected to the zero temperatureq-state Potts model
in the limit q→`, in which the empty site and cluster per-
sistences have recently been studied@4,12#.

The terminology and notation used are as follows. The
word region is reserved for a bunch of consecutive persistent
sites. The distances between regions, i.e., between two con-
secutive persistent sites, is called an interval. The word clus-
ter has the obvious meaning. The number of clusters of size
s per lattice site at timet is ns(t) with the normalization
(ssns51. Region size is denoted byl and the number of
regions of sizel ~per site! by pX( l ;t). The subscript is the
same as for the persistence probabilities and it refers to the
persistence definition used:XP$C,F,E%. When using the
continuum description we use the symbolr instead ofl. The
letter k labels the interval sizes and the corresponding distri-
bution function isnX(k;t). The number densities of persis-
tent sites~the persistence probability! and nonpersistent ones
are denoted by capital lettersPX(t) andNX(t), respectively.

As an example, consider intervals between persistent
empty sites and their distribution functionnE(k;t). The cor-
responding distribution of persistent regions ispE( l ;t). The
number densities are obtained by summing

NE~ t !5 (
k51

`

knE~k;t !, ~1!

PE~ t !5(
l 51

`

lpE~ l ;t !. ~2!

Obviously these two are related by the equationPE(t)51
2NE(t). Similar formulas apply to other persistence defini-
tions, too, except in the cluster persistence case Eq.~2! is
replaced by

PC~ t !5(
l 51

`

pC~ l ;t ! ~3!

and naturallyPC(t)5” 12NC(t).

III. PERSISTENCE PROBABILITIES

A. Empty site persistence

We start by giving a heuristic argument for obtaining the
empty site persistence exponent for arbitraryg. Since the
clusters on both sides of a persistent empty region are inde-
pendent, we are led to consider the maximum excursion of a
single, diffusing cluster. The only complication is that forg
Þ0 collisions will change its diffusivity.

As the average cluster sizeS(t);tz with z51/(22g)
@39,40#, we take each cluster to have atime-dependentdif-
fusion coefficient D(t)5D0tgz;S(t)g. The probability
P(x;t) of finding a cluster at positionx at time t obeys a
diffusion equation

] tP~x;t !5D0tgz]x
2P~x;t !. ~4!

A time transformation

T~ t !5
D0

gz11
tgz11 ~5!

reduces this to an ordinary diffusion equation with the diffu-
sion constantD51. The persistence of the empty space be-
tween particles diffusing with a constantD has recently been
considered forA1A→A in @4# and we just quote the main
results here.

In the long time limit the probability densitypE(r ;tu,)
that a persistent empty region~originally of size,) has size
r at timeT is given by

pE~r ;Tu, !5
,2r

pT
~6!

and the probability that a cluster survives up to timet is

PE~ tu, !5
,2

2pT
5

z

pD0

,2

t2z
;t22z. ~7!

For a general initial length distribution of regionsPE(,,0)
the result will remain the same except,2 will be replaced by
the average over the initial length distribution^,2&.
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These considerations show that the persistence exponent
uE(g)52z52/(22g). This agrees with the exact result
uE(0)51 @4#. Furthermore, the result is independent of the
initial spatial distribution or concentration. All these results
are confirmed by simulations~see Secs. V A and V B!.

B. Filled site persistence

The mechanism by which the filled sites become nonper-
sistent is different at low and high concentrations. At a low
concentration a cluster contains typically only one persistent
region which is usually destroyed before the cluster aggre-
gates with its neighbor. At a high concentration a large clus-
ter is created out of many aggregation events, contains an
assembly of persistent regions, and only the regions near the
edges of the cluster are affected by its motion.

In the low concentration limit we consider the persistence
problem in a continuum, valid for clusters of initial length
S0@1. Forf→0 the time required for a cluster to move its
own length is much smaller than the time required to over-
come the distance between clusters. Therefore one could as-
sume that at low concentrations collisions between clusters
do not matter. This is true only up to some crossover time,
which diverges in the limitf→0. However, to obtain more
insight we will first ignore the collisions.

When clusters do not collide, the persistent sites under
different clusters are destroyed independently. A single dif-
fusing cluster destroys persistent area at both ends. As Fig. 1
shows, the length of the nonpersistent filled part is equal to
the span of the middle point. The spanR(t) of a random
walk is defined asR(t)5xmin(t)1xmax(t), wherexmin(t) and
xmax(t) are the maximum displacements in the negative and
positive directions at timet, respectively.

The probability distribution for the span of an unlimited
random walk is given by@44#

w~R;t !5
8

A2pDt
(
j 51

`

~21! j 11 j 2 expS 2
j 2R2

2Dt D . ~8!

In our case the maximum span is limited by the size of the
cluster s and the probability distributionpF(r ;tus) that an
interval of lengthr of a cluster initially of sizes has survived
up to timet is

pF~r ;tus!5
8

A2pDt
(
j 51

`

~21! j 11 j 2 expS 2
j 2~s2r !2

2Dt D
~9!

for r<s and zero otherwise.
For the asymptotic long time behavior it is useful to trans-

form Eq.~9! to a more tractable form as follows. Writing the
sum in Eq. ~9! in the form ( j 52`

` Gj and applying
the Poisson sum formula @45# ( j 52`

` Gj

5(m52`
` *2`

` dx G(x)e2p imx leads to

pF~r ;tus!5
8Dt

~s2r !3 (
m50

` Fp2Dt~2m11!2

~s2r !2
21G

3expS 2
p2Dt~2m11!2

2~s2r !2 D . ~10!

From Eq.~10!, the probability of finding persistent sites
inside the cluster decays exponentially at large times:

pF~ tus!5E
0

s

drpF~r ;tus!

5 (
m50

`
8@s21p2Dt~2m11!#

s2p2~2m11!2

3expS 2
p2Dt~2m11!2

2s2 D ~11!

'
8Dt

s2
expS 2

p2Dt

2s2 D . ~12!

The persistence probability is obtained by integration

pF~ t !5E
0

`

ds pF~ tus!ns~0!, ~13!

so that the decay will depend on the initial distribution. For
example, forns(0)5d(s2s0) it is an exponential@Eq. ~12!#
and for ns(0)52 exp@2s2/(ps0

2)#/ps0 we get, using the ap-
proximation~12!, a stretched exponential

pF~ t !'A128Dt

p3s0
2

e2A2pDt/s0
2
. ~14!

For the exponential initial distributionns(0)5s0
21e2s/s0, the

application of the saddle point method gives

pF~ t !'A128Dt

3ps0
2

expF2
3

2 S p2Dt

s0
2 D 1/3G . ~15!

All of these examples show a stretched exponential decay
for the persistence probability. The stretching exponent de-

FIG. 1. The length of the nonpersistent filled part is equal to the
spanR(t)5xmin(t)1xmax(t) of the middle point of a cluster. The
length of the persistent region iss02R(t). The cluster position at
t50 is denoted by a thick rectangle, whose middle position is
marked by a dotted line. The dashed lines show the maximum ex-
cursions of the cluster.
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pends on the initial condition and is therefore nonuniversal.
The long time behavior, in the approximation ignoring colli-
sions, is governed by the ratioDt/s0

2, and the decay depends
on concentration due to the factors0.

The approximate span distribution can also be used to
calculate the mean size of persistent regions. First write

^r ~ tus!&5E
0

s

dr rpF~r ;tus!5s2^R~ tus!& ~16!

and use the normalized approximate form for the span dis-
tribution

w̃N~R;tus!5H d~R2s!@12~11js22!e2j/s2
#12j2R25e2j/R2

, R<s,

0, R.s,
~17!

wherej5p2Dt/2, to calculatê R(tus)&, from which

^r ~ tus!&'s expH 2
p2Dt

2s2 J . ~18!

As an example, for the simplest case of a fixed initial sizes0

@ns(0)5d(s2s0)#, the mean length of surviving regions is

^ssurv&5
^r ~ tus0!&
pF~ tus0!

'
s0

3

8Dt
;t21. ~19!

Here again, the decay exponent depends on the initial distri-
bution ns(0).

In the high concentration limitf→1, we adopt another
mean-field type approach: we consider a deterministic model
combined with scaling arguments. Let the average cluster
and empty interval sizes initially bes0 andd0, respectively.
The concentrationf5s0 /(s01d0)'1 for s0@d0.

Now consider the doubling timest1 ,t2 , . . . ,t i , . . . at
which the average cluster and interval sizes aresi52is0 and
di52id0, respectively. At each stepn the doubled cluster is
constructed as follows. First,dn21/2 sites~these do not have
to persistent but they may be! from both ends of the cluster
are made nonpersistent. Second, the resulting cluster is du-
plicated. The probability of finding persistent sites,p(n), at
stepn decays asp(n);e2a(f)n for high enough values off.
Sincesn52ns0;tz, it follows that p(t);t2a(f)z/ ln2.

According to this simple argument the filled site persis-
tence probability decays algebraically for large enough con-
centrations. The persistent sites are swept by domain walls,
which annihilate at aggregation. Since the probability to be
touched by a domain wall depends on their density, the per-
sistence exponent depends on concentration, implying non-
universality. Simulations qualitatively agree with this behav-
ior and furthermore show that the persistence probability
decays algebraically for low concentrations, too. The reason
for the deviation from the span argument lies in the approxi-
mation, which neglects the collisions between clusters. We
return to this issue in a more detail in Sec. V A.

C. Cluster persistence

Cluster persistence is considered in detail elsewhere@46#
but, for completeness, we briefly report the main results and
their implications.

It turns out that the cluster persistence probability

PC~ t !;H exp~2CtbS!, g,0,

t23/2, g50,

t22/(22g), 0,g,2,

~20!

where bS fits well to the expressionbS52/3(122z) and
C.0 is a constant. The discontinuity of the exponent asg
→01 can be understood in terms of a mean-field random
walk analysis. The completely different behavior forg,0
andg>0 is related to the behavior of the cluster size distri-
bution. It is known to scale as

ns~ t !5S~ t !22f „s/S~ t !…, ~21!

whereS(t) is the average cluster size@35#. For small argu-
ment values (x→01) the scaling functionf (x) decays as
x2t for 0<g,2 and as exp(2x2umu) for g,0 @38,41#. These
results can be used to obtain a scaling relation between the
exponents

uC5~22t!z. ~22!

This equation together with Eq.~20! allows one to deter-
mine t for 0<g,2. That is, by solving for the cluster per-
sistence one obtains the small size tail of the scaling func-
tion, the knowledge of which is of primary importance in
aggregation systems. This connection may exist in other
models and offer a way to approach the problem of comput-
ing the cluster size distribution.

IV. DISTRIBUTIONS OF PERSISTENT INTERVALS AND
REGIONS

In the following, we concentrate only on the universal
empty and cluster persistences. The interval size distributions
between consecutive persistent sites are studied using the
natural scaling assumption

nX~k;t !5KX~ t !2a f X„k/KX~ t !…, ~23!
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whereKX(t) is the average interval size andX denotes either
C or E. Inserting the scaling form~23! into Eq. ~1! and re-
placing the sum by an integral results in

NX~ t !5KX~ t !22aE
0

`

dy y fX~y!. ~24!

As PX(t)→0 for t→` it follows from the relationPX(t)
512NX(t) that NX(t)→1 as t→`. The only way to keep
the right hand side of Eq.~24! constant is to requirea52, as
a direct consequence of mass conservation. Note that the
above argument does not require the persistence probability
PX(t) to decay algebraically.

Since the persistence exponents are larger than the dy-
namic exponent,uX.z, the persistence length scale will be
much larger than the diffusive one at large times. The persis-
tent regions are well separated and get destroyed by uncor-
related processes since the correlations grow only astz. In
the scaling limit the scaling functions are therefore simple
exponentials

nX~k;t !5KX~ t !22e2k/KX(t). ~25!

Consider next persistent empty sites. At large times the
region size distribution is given by Eq.~6! for a monodis-
perse initial condition. For other initial distributionsns(0) it
is obtained as

pE~r ;T!5E
0

`

d, pE~r ;Tu, !PE~,,0!5
,0

pT
e2r /,0,

~26!

where T is the rescaled time@Eq. ~5!# and the last form
corresponds to the initial distributionPE(,,0)5,0

21e2,/,0.
The dependence on the diffusion exponent enters only
through the time scaleT;t2/(22g). The spatial and time
dependences inpE(r ;t) are decoupled. From this it follows
that the average size of the persistent empty regions,
LE(t), is a constant at large times. For the monodisperse
and exponential initial conditions we getLE

mono(t)
5PE(Tu,0)21*0

,0 dr rpE(r ;Tu,0)5,0/3 and LE
exp(t)

5*0
` dr rpE(r ;T)/*0

` dr pE(r ;T)5,0, respectively. These
both are independent of time. The simulations~see Sec. V D!
confirm this.

V. SIMULATIONS

The simulations are done on a one-dimensional lattice
with periodic boundary conditions with a standard algorithm
@41#. In all the simulationsD151, the system sizes range
from 53104 to 1.53106, and the data are averaged over
1000–50 000 realizations.

A. Dependence on concentration and initial conditions

We test the sensitivity of the persistence probabilities
against concentration changes and two different initial con-
ditions. The first initial condition used is random: each lattice
site is filled with probabilityf. The other one is determinis-
tic and monodisperse with equidistant clusters of a given size

FIG. 2. The persistence probabilities~a! PC(t), ~b! PE(t), and
~c! PF(t) for size-independent diffusion coefficients (g50) and for
concentrationsf50.20 (s), 0.50 (h), and 0.80 (¹). Results
from simulations using random and monodisperse (s051) initial
conditions are denoted by open and filled symbols, respectively.
Pluses~1! are obtained with monodisperse initial conditions for
f50.20 ands0510. The insets show the running exponents.

PERSISTENCE IN CLUSTER-CLUSTER AGGREGATION PHYSICAL REVIEW E66, 026120 ~2002!

026120-5



s0. We present data only for size-independent diffusion co-
efficients but we have checked that forg5” 0 the behavior is
similar.

As Fig. 2 shows, a change in the initial condition does not
have a significant effect on any of the persistences. A change
in the concentration affects only the amplitudes of the cluster
and empty site persistence distributions. The numerical esti-
mates for the exponents obtained from the saturated part of
the running exponents areuC(0)51.4860.03 anduE(0)
51.0060.02. These are in excellent agreement with the ex-
act resultsuC(0)5 3

2 @5,47# anduE(0)51 @4#.
For the filled site persistence the distribution shows a

transition from an algebraic decay to a relatively faster one
when decreasing the concentration. The nonalgebraic decay
seen in simulations is only a crossover behavior. The discrep-
ancy between the analysis of Sec. III B and simulations is
due to cluster aggregation. This occurs for times larger than
the average collision timetcoll;1/(Df2), which indeed di-
verges forf→0. The large time persistence probability of
filled sites is dominated by the clusters, that have collided
with others. This is illustrated in Fig. 3, which shows both
the persistence probability and the average size of those clus-
ters that contain persistent sites. There is a clear crossover
from the behavior given by the analysis of Sec. III B att
'300 to the one for which the collisions are significant.
After this crossover time, the clusters including persistent
empty sites grow similarly to the other ones.

To summarize, the simulations support the universality of
empty and cluster persistences and show without doubt that
the filled site persistence is nonuniversal. Similar
concentration-dependent behavior has been observed also for
persistence of bubbles in soap froths@27#.

B. Dependence ong

All the dynamic scaling properties of the DLCA depend
on g and the same is true for the persistence probabilities as
Fig. 4 shows. The empty site persistence probability decays
algebraically for all values ofg,2. The analytical prediction
uE52z is compared to simulations in Fig. 5. The agreement
is excellent. Hence, there are no nontrivial correlations and
the clusters surrounding persistent empty sites grow like the

others. The cluster persistence decays algebraically only for
g>0 and faster than any power oft for g,0 in accordance
with Eq. ~20!.

C. Intervals between consecutive persistent sites

In Sec. IV we argued that the size distribution of intervals
between persistent quantities would scale according to
nX(k;t)5KX(t)22f X„k/KX(t)… with a simple exponential
scaling function@Eq. ~25!#. When the corresponding persis-
tence probability decays algebraically,KX(t);AXtuX, with a
nonuniversal amplitudeAX(f), this can be presented also as
nX(k;t)5t22uXf̃ X(k/tuX).

There is a difference between these two scaling forms: for
the latter the scaling functions will not overlap each other for
different concentrations due to the nonuniversal amplitude
dependence. Therefore for clarity we show the scaling plots
using this formulation. Furthermore, we prefer to show the
scaling of the complement of the cumulative distribution

I X~k;t !5(
i>k

nX~ i ;t !. ~27!

It is easy to see from the scaling ofnX(k;t) and Eq.~25! that
this should scale asI X(k;t)5t2uXgX(k/tuX) with gX(x)

5AX
21e2AX

21x.

FIG. 3. ~a! Filled site persistence probability and~b! average
cluster size of those clusters that contain persistent sites for deter-
ministic initial conditions withg50, s0511, andf50.2. The solid
line is given by Eq.~12! and the dashed line showst1/2 behavior. FIG. 4. The cluster and empty site persistence probabilities

PC(t) ~filled symbols! and PE(t) ~empty symbols! for g5
21.0(¹), 0.0(h), and 0.75(s).

FIG. 5. Comparison of the numerically obtained empty site per-
sistence exponentuE(h) to the mean-field resultuE52z52/(2
2g) ~solid line! as a function of the diffusion exponentg.
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Figure 6 shows that the scaling works for the empty site
persistence and that the scaling function is an exponential
one indeed. The plots for the cluster persistence are similar
~not shown!. The scaling function is universal and all the
curves in Fig. 6 would overlap each other if one plotted
KE(t)I (k;t) as a function ofk/KE(t). Note that the diffusion
exponentg has no influence on the scaling function.

Although the summation in Eq.~27! smooths the data, at
the same time it loses information about the smallk/tuE be-
havior. This is illustrated in Fig. 7 where no summation is
done. Fork!tuE the scaling does not work. The reason is the
following. The scaling should work in the limitk→` and
t→` with y5k/tuE fixed. In particular, the conditionk@tz

should be satisfied for the two length scales of the problem to
be well separated. Define now a time-dependentyc(t) so that
the scaling works fory.yc(t). This quantity gets smaller at

the same rate at which the curves in Fig. 7 shift towards zero.
Our estimate from the numerical data givesyc(t)
;t20.5060.03, which is consistent withyc(t);t2z. Thus the
poor scaling in Fig. 7 fork!tuE is just a manifestation of the
finite time behavior with two competing length scales,L D
;tz andL p;tuE. This effect vanishes in the scaling limit. A
similar, although not as clear, violation of scaling induced for
the same reason is seen in theq-state Potts model@4#.

D. Persistent regions

Figures 8 and 9 show the empty region distributions for
the initial cluster size distributionsns(0)5d(s2s0) and
ns(0)5s0

21 exp(2s/s0). These confirm the analytical predic-
tions of a linear@Eq. ~6!# and an exponential@Eq. ~26!# de-
cay. Hence, the dependence on the diffusion exponent enters
only through a multiplicative factor oft22/(22g) in the dis-
tributions and the average region size approaches a constant
at late times. In Fig. 8 the smallest times shown are not large

FIG. 6. Scaling plot for the complement of the cumulative dis-
tribution of intervals between two consecutive persistent empty
sites att529, . . . ,214 for concentrations and diffusion exponents
shown in the figure. The value used for the persistence exponent
uE52/(22g).

FIG. 7. Scaling plot for the distribution of intervals between two
consecutive persistent empty sites att526, . . . ,211 for f50.2 and
g50.

FIG. 8. The size distributions of persistent empty regions for
g50 and ordered initial conditions withs0510 andf50.2. The
time instants range fromt5210 to t5217.

FIG. 9. The size distributions of persistent empty regions~upper
curves! and clusters~lower curves! for random initial conditions
andg50.75. The measurement times are shown in the figure.

PERSISTENCE IN CLUSTER-CLUSTER AGGREGATION PHYSICAL REVIEW E66, 026120 ~2002!

026120-7



enough for the analysis of Sec. III A to be valid but the
tendency of the distribution to approach a straight line is
clearly visible.

Naturally, the size distribution of persistent clusters re-
mains unaltered for a monodisperse initial conditionns(0)
5ds

0
,s . The same is true also for size-independent diffusion

coefficients (g50) no matter what the initial distribution is.
Therefore we present only the result for random initial con-
ditions and forg50.75 in Fig. 9. In this case also the scaling
function is a pure exponential, i.e., it remains unaltered.

VI. CONCLUSIONS

In this paper we have considered persistence in an aggre-
gation process, in the case of one-dimensional DLCA. The
emphasis is on local properties: empty, filled, and cluster
persistences together with the corresponding region and in-
terval size distributions. We have shown that the three per-
sistences are independent and each has its distinct scaling
properties.

The perhaps most natural choice, the probability that a
site has remained in the same state—filled or empty—is non-
universal. The filled site persistence is responsible for this.
The empty site persistence is universal. The difference in the
dynamics of empty and filled sites in DLCA thus becomes
apparent. The cluster persistence is a third independent quan-
tity since it classifies clusters whereas the two other persis-
tence definitions are considered at a fixed point in space.

To summarize, the universality of empty site persistence
is supported both by mean-field continuum arguments and by
simulations. The former leads to a relatively simple relation
between the persistence exponent and the dynamic exponent,
uE52z, verified by simulations. This is one of the few ex-
amples@4# where the inequalityu.zd, whered is the spatial
dimension, is satisfied. The consequence of this is that the
persistent empty regions do not have a fractal character. This
is not true, for example, for the persistent regions in the Ising
@10# or diffusion-annihilation@17# models. The fact thatuE is
notably larger thanz makes the separation of the diffusive
and persistence length scales clearly visible in the scaling of
the interval size distribution.

The filled site persistence decays asymptotically algebra-
ically for g,2 and for all concentrations:PF(t);t2uF. The
persistence exponentuF depends on concentration and is
therefore nonuniversal. At low concentrations the filled site
persistence decays as a stretched exponential up to a
concentration-dependent crossover time, after which the col-

lisions between clusters become important and start to domi-
nate the persistence behavior.

The cluster persistence probability is universal and decays
algebraically for 0<g,2 and as a stretched exponential for
g,0. For 0,g,2 the persistence exponent is given by
uC(g)52z52/(22g) and it is discontinuous asg→01

since uC(0)5 3
2 . All these results are in close connection

with the scaling of the cluster size distribution, especially
with the smallx decay of the scaling functionf (x);x2t. In
fact, there is a scaling relation between the exponentsuC
5(22t)z. The scaling relation together with the result for
uC offers a way to determine the small size tail of the cluster
size distribution in DLCA.

It is worth emphasizing that the universal empty and clus-
ter persistences decay with the same exponentuE5uC52z
52/(22g) for 0,g,2 but have nothing to do with each
other for g,0. In fact, for g>0 we can write PC(t)
;@PE(t)#G, whereG takes the values 3/2 and 1 forg50
and 0,g,2, respectively. The same persistence exponents,
i.e., G51, for positiveg are due to the fact that the clusters
giving the dominant contribution to the cluster persistence
are those that asymptotically become stationary. Any other
value ofG makes the interpretation more opaque. A similar
relation, PC(t);@PE(t)#G, with a nontrivialG has recently
been observed also for noninteracting random walkers@19#
and for the Potts model@12# in one dimension. A challenge
for the future is to understand the origin and limitations of
this relationship.

In conclusion, we have presented a rather comprehensive
study of various local persistence probabilities in the one-
dimensional DLCA model. Our study is of interest also for
the sake of practical realizations. Aggregation processes are
plentiful, and all of the definitions—whether a point in space
is occupied or not by a cluster, or whether clusters survive
intact—might well be possible to measure experimentally. It
is interesting also to note that, when the decay of a persis-
tence probability is algebraic and universal, the exponent is
always directly in some relation to the dynamical exponentz
of the aggregation process. It is an obvious question to ask
how the various quantities work out in higher dimensions.
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