505 research outputs found

    Improved Constraints on the Acceleration History of the Universe and the Properties of the Dark Energy

    Get PDF
    We extend and apply a model-independent analysis method developed earlier by Daly & Djorgovski to new samples of supernova standard candles, radio galaxy and cluster standard rulers, and use it to constrain physical properties of the dark energy as functions of redshift. Similar results are obtained for the radio galaxy and supernova data sets. The first and second derivatives of the distance are compared directly with predictions in a standard model based on General Relativity. The good agreement indicates that General Relativity provides an accurate description of the data on look-back time scales of about ten billion years. The first and second derivatives are combined to obtain the acceleration parameter, assuming only the validity of the Robertson-Walker metric, independent of a theory of gravity and of the physical nature of the dark energy. The acceleration of the universe at the current epoch is indicated by the analysis. The effect of non-zero space curvature on q(z) is explored. We solve for the pressure, energy density, equation of state, and potential and kinetic energy of the dark energy as functions of redshift assuming that General Relativity is the correct theory of gravity, and the results indicate that a cosmological constant in a spatially flat universe provides a good description of each of these quantities over the redshift range from zero to about one. We define a new function, the dark energy indicator, in terms of the first and second derivatives of the coordinate distance and show how this can be used to measure deviations of w from -1 and to obtain a new and independent measure of Omega.Comment: 46 pages, submitted for publicatio

    A View through Faraday's Fog 2: Parsec Scale Rotation Measures in 40 AGN

    Full text link
    Results from a survey of the parsec scale Faraday rotation measure properties for 40 quasars, radio galaxies and BL Lac objects are presented. Core rotation measures for quasars vary from approximately 500 to several thousand radians per meter squared. Quasar jets have rotation measures which are typically 500 radians per meter squared or less. The cores and jets of the BL Lac objects have rotation measures similar to those found in quasar jets. The jets of radio galaxies exhibit a range of rotation measures from a few hundred radians per meter squared to almost 10,000 radians per meter squared for the jet of M87. Radio galaxy cores are generally depolarized, and only one of four radio galaxies (3C-120) has a detectable rotation measure in the core. Several potential identities for the foreground Faraday screen are considered and we believe the most promising candidate for all the AGN types considered is a screen in close proximity to the jet. This constrains the path length to approximately 10 parsecs, and magnetic field strengths of approximately 1 microGauss can account for the observed rotation measures. For 27 out of 34 quasars and BL Lacs their optically thick cores have good agreement to a lambda squared law. This requires the different tau = 1 surfaces to have the same intrinsic polarization angle independent of frequency and distance from the black hole.Comment: Accepted to the Astrophysical Journal: 71 pages, 40 figure

    STIS spectroscopy of the emission line gas in the nuclei of nearby FR-I galaxies

    Full text link
    We present the results of the analysis of a set of medium resolution spectra, obtained by the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, of the emission line gas present in the nuclei of a complete sample of 21 nearby, early-type galaxies with radio jets (the UGC FR-I Sample). For each galaxy nucleus we present spectroscopic data in the region of H-alpha and the dervived kinematics. We find that in 67% of the nuclei the gas appears to be rotating and, with one exception, the cases where rotation is not seen are either face on or have complex central morphologies. We find that in 62% of the nuclei the fit to the central spectrum is improved by the inclusion of a broad component. The broad components have a mean velocity dispersion of 1349 +/- 345 km\s and are redshifted from the narrow line components (assuming an origin in H-alpha) by 486 +/- 443 km\s.Comment: 119 pages, 26 figures, ApJS Accepted, version with full figures available at http://www.astro.columbia.edu/~jake/pub/fr1datapaper.pd

    Chandra Discovery of a 300 kpc X-ray Jet in the GPS Quasar PKS1127-145

    Get PDF
    We have discovered an X-ray jet with Chandra imaging of the z=1.187 radio-loud quasar PKS1127-145. In this paper we present the Chandra X-ray data, follow-up VLA observations, and optical imaging using the HST WFPC2. The X-ray jet contains 273+/-5 net counts in 27ksec and extends ~30 arcsec, from the quasar core, corresponding to a minimum projected linear size of ~330/h_50 kpc. The evaluation of the X-ray emission processes is complicated by the observed offsets between X-ray and radio brightness peaks. We discuss the problems posed by these observations to jet models. In addition, PKS1127-145 is a Giga-Hertz Peaked Spectrum radio source, a member of the class of radio sources suspected to be young or ``frustrated'' versions of FRI radio galaxies. However the discovery of an X-ray and radio jet extending well outside the host galaxy of PKS1127-145 suggests that activity in this and other GPS sources may be long-lived and complex.Comment: 22 pages, 11 ps figures, 1 figure in a JPG file, 3 tables. AASTEX. Accepted by The Astrophysical Journa

    The Luminosity Profiles of Brightest Cluster Galaxies

    Full text link
    (Abridged) We have derived detailed R band luminosity profiles and structural parameters for a total of 430 brightest cluster galaxies (BCGs), down to a limiting surface brightness of 24.5 mag/arcsec^2. Light profiles were initially fitted with a Sersic's R^(1/n) model, but we found that 205 (~48) BCGs require a double component model to accurately match their light profiles. The best fit for these 205 galaxies is an inner Sersic model, with indices n~1-7, plus an outer exponential component. Thus, we establish the existence of two categories of the BCGs luminosity profiles: single and double component profiles. We found that double profile BCGs are brighter ~0.2 mag than single profile BCG. In fact, the Kolmogorov-Smirnov test applied to these subsamples indicates that they have different total magnitude distributions, with mean values M_R=-23.8 +/- 0.6 mag for single profile BCGs and M_R=-24.0 +/- 0.5 mag for double profile BCGs. We find that partial luminosities for both subsamples are indistinguishable up to r = 15 kpc, while for r > 20 kpc the luminosities we obtain are on average 0.2 mag brighter for double profile BCGs. This result indicates that extra-light for double profile BCGs does not come from the inner region but from the outer regions of these galaxies. The best fit slope of the Kormendy relation for the whole sample is a = 3.13 +/- 0.04$. However, when fitted separately, single and double profile BCGs show different slopes: a_(single) = 3.29 +/- 0.06 and a_(double)= 2.79 +/- 0.08. On the other hand, we did not find differences between these two BCGs categories when we compared global cluster properties such as the BCG-projected position relative to the cluster X-ray center emission, X-ray luminosity, or BCG orientation with respect to the cluster position angle.Comment: August 2011 issue of ApJS, volume 195, 15 http://iopscience.iop.org/0067-0049/195/2/1

    Radio Emission from GRO J1655-40 during the 1994 Jet Ejection Episodes

    Get PDF
    We report multifrequency radio observations of GRO J1655-40 obtained with the Australia Telescope Compact Array, the Molonglo Observatory Synthesis Telescope and the Hartebeesthoek Radio Astronomy Observatory at the time of the major hard X-ray and radio outbursts in 1994 August-September. The radio emission reached levels of the order of a few Jy and was found to be linearly polarized by up to 10%, indicating a synchrotron origin. The light curves are in good agreement with those measured with the VLA, but our closer time sampling has revealed two new short-lived events and significant deviations from a simple exponential decay. The polarization data show that the magnetic field is well ordered and aligned at right angles to the radio jets for most of the monitoring period. The time evolution of the polarization cannot be explained solely in terms of a simple synchrotron bubble model, and we invoke a hybrid `core-lobe' model with a core which contributes both synchrotron and free-free emission and `lobes' which are classical synchrotron emitters.Comment: 36 pages, 5 tables, 9 figures; accepted for publication in Ap

    Dominant Nuclear Outflow Driving Mechanisms in Powerful Radio Galaxies

    Get PDF
    In order to identify the dominant nuclear outflow mechanisms in Active Galactic Nuclei, we have undertaken deep, high resolution observations of two compact radio sources (PKS 1549-79 and PKS 1345+12) with the Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope. Not only are these targets known to have powerful emission line outflows, but they also contain all the potential drivers for the outflows: relativistic jets, quasar nuclei and starbursts. ACS allows the compact nature (<0.15") of these radio sources to be optically resolved for the first time. Through comparison with existing radio maps we have seen consistency in the nuclear position angles of both the optical emission line and radio data. There is no evidence for bi-conical emission line features on the large-scale and there is a divergance in the relative position angles of the optical and radio structure. This enables us to exclude starburst driven outflows. However, we are unable to clearly distinguish between radiative AGN wind driven outflows and outflows powered by relativistic radio jets. The small scale bi-conical features, indicative of such mechanisms could be below the resolution limit of ACS, especially if aligned close to the line of sight. In addition, there may be offsets between the radio and optical nuclei induced by heavy dust obscuration, nebular continuum or scattered light from the AGN.Comment: 9 pages, 8 figures, emulateapj, ApJ Accepte

    Radio-Excess IRAS Galaxies: PMN/FSC Sample Selection

    Full text link
    A sample of 178 extragalactic objects is defined by correlating the 60 micron IRAS FSC with the 5 GHz PMN catalog. Of these, 98 objects lie above the radio/far-infrared relation for radio-quiet objects. These radio-excess galaxies and quasars have a uniform distribution of radio excesses and appear to be a new population of active galaxies not present in previous radio/far-infrared samples. The radio-excess objects extend over the full range of far-infrared luminosities seen in extragalactic objects. Objects with small radio excesses are more likely to have far-infrared colors similar to starbursts, while objects with large radio excesses have far-infrared colors typical of pure AGN. Some of the most far-infrared luminous radio-excess objects have the highest far-infrared optical depths. These are good candidates to search for hidden broad line regions in polarized light or via near-infrared spectroscopy. Some low far-infrared luminosity radio-excess objects appear to derive a dominant fraction of their far-infrared emission from star formation, despite the dominance of the AGN at radio wavelengths. Many of the radio-excess objects have sizes likely to be smaller than the optical host, but show optically thin radio emission. We draw parallels between these objects and high radio luminosity Compact Steep-Spectrum (CSS) and GigaHertz Peaked-Spectrum (GPS) objects. Radio sources with these characteristics may be young AGN in which the radio activity has begun only recently. Alternatively, high central densities in the host galaxies may be confining the radio sources to compact sizes. We discuss future observations required to distinguish between these possibilities and determine the nature of radio-excess objects.Comment: Submitted to AJ. 44 pages, 11 figures. A version of the paper with higher quality figures is available from http://www.mso.anu.edu.au/~cdrake/PMNFSC/paperI

    A Radio Study of the Seyfert galaxy Markarian 6: Implications for Seyfert life-cycles

    Get PDF
    We have carried out an extensive radio study with the Very Large Array on the Seyfert 1.5 galaxy Mrk 6 and imaged a spectacular radio structure in the source. The radio emission occurs on three different spatial scales, from ~7.5 kpc bubbles to ~1.5 kpc bubbles lying nearly orthogonal to them and a ~1 kpc radio jet lying orthogonal to the kpc-scale bubble. To explain the complex morphology, we first consider a scenario in which the radio structures are the result of superwinds ejected by a nuclear starburst. However, recent Spitzer observations of Mrk 6 provide an upper limit to the star formation rate (SFR) of ~5.5 M_sun/yr, an estimate much lower than the SFR of ~33 M_sun/yr derived assuming that the bubbles are a result of starburst winds energized by supernovae explosions. Thus, a starburst alone cannot meet the energy requirements for the creation of the bubbles in Mrk 6. We show that a single plasmon model is energetically infeasible, and we argue that a jet-driven bubble model while energetically feasible does not produce the complex radio morphologies. Finally, we consider a model in which the complex radio structure is a result of an episodically-powered precessing jet that changes its orientation. This model is the most attractive as it can naturally explain the complex radio morphology, and is consistent with the energetics, the spectral index and the polarization structure. Radio emission in this scenario is a short-lived phenomenon in the lifetime of a Seyfert galaxy which results due to an accretion event.Comment: Accepted for publication in Ap

    An infrared survey of brightest cluster galaxies: Paper I

    Full text link
    We report on an imaging survey with the Spitzer Space Telescope of 62 brightest cluster galaxies with optical line emission. These galaxies are located in the cores of X-ray luminous clusters selected from the ROSAT All-Sky Survey. We find that about half of these sources have a sign of excess infrared emission; 22 objects out of 62 are detected at 70 microns, 18 have 8 to 5.8 micron flux ratios above 1.0 and 28 have 24 to 8 micron flux ratios above 1.0. Altogether 35 of 62 objects in our survey exhibit at least one of these signs of infrared excess. Four galaxies with infrared excesses have a 4.5/3.6 micron flux ratio indicating the presence of hot dust, and/or an unresolved nucleus at 8 microns. Three of these have high measured [OIII](5007A)/Hbeta flux ratios suggesting that these four, Abell 1068, Abell 2146, and Zwicky 2089, and R0821+07, host dusty active galactic nuclei (AGNs). 9 objects (including the four hosting dusty AGNs) have infrared luminosities greater than 10^11 L_sol and so can be classified as luminous infrared galaxies (LIRGs). Excluding the four systems hosting dusty AGNs, the excess mid-infrared emission in the remaining brightest cluster galaxies is likely related to star formation.Comment: accepted for publication in ApJ
    • 

    corecore