4,815 research outputs found
Critically phase-matched Ti:sapphire-laserpumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2
We report a high-repetition-rate femtosecond optical parametric oscillator (OPO) for the deep-infrared (deep-IR) based on type-I critical phase-matching in CdSiP2 (CSP), pumped directly by a Ti:sapphire laser. Using angle-tuning in the CSP crystal, the OPO can be continuously tuned across 7306–8329 nm (1201–1369 cm−1) in the deep-IR. It delivers up to 18 mW of idler average power at 7306 nm and >7 mW beyond 8000 nm at 80.5 MHz repetition rate, with the spectra exhibiting bandwidths of >150 nm across the tuning range. Moreover, the signal is tunable across 1128–1150 nm in the near-infrared, providing up to 35 mW of average power in ∼266 fs pulses at 1150 nm. Both beams exhibit single-peak Gaussian distribution in TEM00 spatial profile. With an equivalent spectral brightness of ∼5.6×1020photons s−1 mm−2 sr−10.1% BW−1, this OPO represents a viable alternative to synchrotron and supercontinuum sources for deep-IR applications in spectroscopy, metrology, and medical diagnostics.Peer ReviewedPostprint (author's final draft
Femtosecond deep-infrared optical parametric oscillator pumped directly by a Ti:sapphire laser
We report a high-repetition-rate femtosecond optical parametric oscillator (OPO) for the deep-infrared (deep-IR) based on the nonlinear optical crystal, CdSiP2 (CSP), pumped directly by a Ti:sapphire laser, for the first time. By pumping CSP at <1 μm, we have achieved practical output powers at the longest wavelengths generated by any Ti:sapphire-pumped OPO. Using a combination of pump wavelength tuning, type-I critical phase-matching, and cavity delay tuning, we have generated continuously tunable radiation across 6654−8373 nm (1194−1503 cm-1) at 80.5 MHz repetition rate, providing up to 20 mW of average power at 7314 nm and <7 mW beyond 8000 nm, with idler spectra exhibiting bandwidths of 140−180 nm across the tuning range. Moreover, the near-IR signal is tunable across 1127−1192 nm, providing up to 37 mW of average power at 1150 nm. Signal pulses, characterised using intensity autocorrelation, have durations of ∼260–320 fs, with corresponding time-bandwidth product of ∆υ∆τ∼1. The idler and signal output exhibit a TEM00 spatial profile with single-peak Gaussian distribution. With an equivalent spectral brightness of ∼6.68×1020 photons s-1 mm-2 sr-1 0.1% BW-1, this OPO represents a viable table-top alternative to synchrotron and supercontinuum sources for deep-IR applications in spectroscopy, metrology and medical diagnostics.Peer ReviewedPostprint (author's final draft
Elementary analysis of the special relativistic combination of velocities, Wigner rotation, and Thomas precession
The purpose of this paper is to provide an elementary introduction to the
qualitative and quantitative results of velocity combination in special
relativity, including the Wigner rotation and Thomas precession. We utilize
only the most familiar tools of special relativity, in arguments presented at
three differing levels: (1) utterly elementary, which will suit a first course
in relativity; (2) intermediate, to suit a second course; and (3) advanced, to
suit higher level students. We then give a summary of useful results, and
suggest further reading in this often obscure field.Comment: V1: 25 pages, 6 figures; V2: 22 pages, 5 figures. The revised version
is shortened and the arguments streamlined. Minor changes in notation and
figures. This version matches the published versio
First principles calculation of uniaxial magnetic anisotropy and magnetostriction in strained CMR films
We performed first - principles relativistic full-potential linearized
augmented plane wave calculations for strained tetragonal ferromagnetic
La(Ba)MnO with an assumed experimental structure of thin strained
tetragonal LaCaMnO (LCMO) films grown on SrTiO[001]
and LaAlO[001] substrates. The calculated uniaxial magnetic anisotropy
energy (MAE) values, are in good quantitative agreement with experiment for
LCMO films on SrTiO substrate. We also analyze the applicability of linear
magnetoelastic theory for describing the stain dependence of MAE, and estimate
magnetostriction coefficient .Comment: Talk given at APS99 Meeting, Atlanta, 199
Fluoride-containing bioactive glasses: Effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid
NOTICE: this is the author’s version of a work that was accepted for publication in Acta Biomaterialia. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Acta Biomaterialia, [VOL 6, ISSUE 8, (2010)] DOI: 10.1016/j.actbio.2010.01.04
An exact quantification of backreaction in relativistic cosmology
An important open question in cosmology is the degree to which the
Friedmann-Lemaitre-Robertson-Walker (FLRW) solutions of Einstein's equations
are able to model the large-scale behaviour of the locally inhomogeneous
observable universe. We investigate this problem by considering a range of
exact n-body solutions of Einstein's constraint equations. These solutions
contain discrete masses, and so allow arbitrarily large density contrasts to be
modelled. We restrict our study to regularly arranged distributions of masses
in topological 3-spheres. This has the benefit of allowing straightforward
comparisons to be made with FLRW solutions, as both spacetimes admit a discrete
group of symmetries. It also provides a time-symmetric hypersurface at the
moment of maximum expansion that allows the constraint equations to be solved
exactly. We find that when all the mass in the universe is condensed into a
small number of objects (<10) then the amount of backreaction in dust models
can be large, with O(1) deviations from the predictions of the corresponding
FLRW solutions. When the number of masses is large (>100), however, then our
measures of backreaction become small (<1%). This result does not rely on any
averaging procedures, which are notoriously hard to define uniquely in general
relativity, and so provides (to the best of our knowledge) the first exact and
unambiguous demonstration of backreaction in general relativistic cosmological
modelling. Discrete models such as these can therefore be used as laboratories
to test ideas about backreaction that could be applied in more complicated and
realistic settings.Comment: 13 pages, 9 figures. Corrections made to Tables IV and
An Improved Treatment of Optics in the Lindquist-Wheeler Models
We consider the optical properties of Lindquist-Wheeler (LW) models of the
Universe. These models consist of lattices constructed from regularly arranged
discrete masses. They are akin to the Wigner-Seitz construction of solid state
physics, and result in a dynamical description of the large-scale Universe in
which the global expansion is given by a Friedmann-like equation. We show that
if these models are constructed in a particular way then the redshifts of
distant objects, as well as the dynamics of the global space-time, can be made
to be in good agreement with the homogeneous and isotropic
Friedmann-Lemaitre-Robertson-Walker (FLRW) solutions of Einstein's equations,
at the level of <3% out to z~2. Angular diameter and luminosity distances, on
the other hand, differ from those found in the corresponding FLRW models, while
being consistent with the 'empty beam' approximation, together with the
shearing effects due to the nearest masses. This can be compared with the large
deviations found from the corresponding FLRW values obtained in a previous
study that considered LW models constructed in a different way. We therefore
advocate the improved LW models we consider here as useful constructions that
appear to faithfully reproduce both the dynamical and observational properties
of space-times containing discrete masses.Comment: 7 pages, 5 figure
Charm and Bottom Semileptonic Decays
We review the present status of theoretical attempts to calculate the
semileptonic charm and bottom decays and then present a calculation of these
decays in the light--front frame at the kinematic point . This allows us
to evaluate the form factors at the same value of , even though the
allowed kinematic ranges for charm and bottom decays are very different. Also,
at this kinematic point the decay is given in terms of only one form factor
. For the ratio of the decay rates given by the E653 collaboration we
show that the determination of the ratio of the Cabibbo--Kobayashi--Maskawa
(CKM) matrix elements is consistent with that obtained from the unitarity
constraint. At present, though, the unitarity method still has greater
accuracy. Since comparisons of the semileptonic decays into and either
electrons or muons will be available soon from the E791 Fermilab experiment, we
also look at the massive muon case. We show that for a range of the
symmetry breaking is small even though the contributions of the
various helicity amplitudes becomes more complicated. For decays, the decay
at involves an extra form factor
coming from the photon contribution and so is not amenable to the same kind of
analysis, leaving only the decay as a
possibility. As the mass of the decaying particle increases we note that the
symmetry becomes badly broken at .Comment: Latex, 19 pages, two figures are attached, a minor change in the
manuscript related to thi
- …