research

Critically phase-matched Ti:sapphire-laserpumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2

Abstract

We report a high-repetition-rate femtosecond optical parametric oscillator (OPO) for the deep-infrared (deep-IR) based on type-I critical phase-matching in CdSiP2 (CSP), pumped directly by a Ti:sapphire laser. Using angle-tuning in the CSP crystal, the OPO can be continuously tuned across 7306–8329 nm (1201–1369  cm−1) in the deep-IR. It delivers up to 18 mW of idler average power at 7306 nm and >7  mW beyond 8000 nm at 80.5 MHz repetition rate, with the spectra exhibiting bandwidths of >150  nm across the tuning range. Moreover, the signal is tunable across 1128–1150 nm in the near-infrared, providing up to 35 mW of average power in ∼266  fs pulses at 1150 nm. Both beams exhibit single-peak Gaussian distribution in TEM00 spatial profile. With an equivalent spectral brightness of ∼5.6×1020photons s−1 mm−2 sr−10.1% BW−1, this OPO represents a viable alternative to synchrotron and supercontinuum sources for deep-IR applications in spectroscopy, metrology, and medical diagnostics.Peer ReviewedPostprint (author's final draft

    Similar works