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An Improved Treatment of Optics in the Lindquist–Wheeler Models
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We consider the optical properties of Lindquist–Wheeler (LW) models of the Universe. These
models consist of lattices constructed from regularly arranged discrete masses. They are akin to the
Wigner–Seitz construction of solid state physics, and result in a dynamical description of the large–
scale Universe in which the global expansion is given by a Friedmann–like equation. We show that
if these models are constructed in a particular way then the redshifts of distant objects, as well as
the dynamics of the global space–time, can be made to be in good agreement with the homogeneous
and isotropic Friedmann–Lemâıtre–Robertson–Walker (FLRW) solutions of Einstein’s equations, at
the level of <∼ 3% out to z ≃ 2. Angular diameter and luminosity distances, on the other hand, differ
from those found in the corresponding FLRW models, while being consistent with the ‘empty beam’
approximation, together with the shearing effects due to the nearest masses. This can be compared
with the large deviations found from the corresponding FLRW values obtained in a previous study
that considered LW models constructed in a different way. We therefore advocate the improved
LW models we consider here as useful constructions that appear to faithfully reproduce both the
dynamical and observational properties of space–times containing discrete masses.

I. INTRODUCTION

In previous papers [1, 2] we have considered luminosity
distances and redshifts in the (LW) models of the Uni-
verse [3]. These models treat space–time as a lattice of
regular cells, each with a mass at their center. The ge-
ometry inside a given cell is then calculated under the
assumption that the influences of all masses external to
that cell are approximately spherically symmetric. This
is the direct gravitational analogue of the Wigner–Seitz
construction from electromagnetism [4].

Unlike the models constructed by Wigner and Seitz,
however, the LW models (without a cosmological con-
stant) are necessarily dynamical. This is due to the sin-
gle charge available in gravitational theory, that causes
a non–zero derivative of the gravitational field normal
to the boundaries of each cell. The resulting force then
causes the cell boundaries to fall toward, or away from,
the central mass of each cell, and makes the entire lattice
dynamical. Within this model the phenomenon of an ex-
panding universe is then an emergent one: The global
cosmological dynamics result from gluing together the
space–times around individual masses, each of which is
well described locally as being static. These models do
not require us to specify a ‘background geometry’ for the
Universe, and therefore provide an opportunity to study
the ‘back-reaction’ of structures on the global evolution
of the Universe [5]. They also provide a simple model
of an inhomogeneous universe, within which calculations
can be readily performed.
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Lattices constructed in a positively curved space with
no cosmological constant were considered in the original
work on this subject by Lindquist and Wheeler [3]. These
models were shown to obey evolution equations identi-
cal to those of the spatially homogeneous and isotropic
Friedmann–Lemâıtre–Robertson–Walker (FLRW) solu-
tions of Einstein’s equations with pressureless dust
sources. Only the scale of the solutions to those equa-
tions was found to be different. This study was gen-
eralized to include lattices constructed in spatially flat
and negatively curved spaces in [1, 6], and to include
a cosmological constant in [2]. Both spatially flat and
negatively curved models were also shown to obey the
expected Friedmann equations. A further interesting ex-
tension of the original LW models was performed in [7],
where lattices with only two cells were considered, and
shown to exist as solutions of Einstein’s equations only
when Λ 6= 0 and when the masses are out of causal con-
tact with each other.

Unfortunately, the LW models (with the exception of
the 2 mass case) are not exact solutions of Einstein’s
equations, and the way that the global lattice is con-
structed is not entirely unambiguous. In their original
paper, Lindquist and Wheeler discussed what they con-
sidered to be two reasonable methods of constructing
such a structure; what they referred to as Condition I and
Condition II in [3] (these conditions will be discussed in
more detail in Section II). Both of these conditions give
the same Friedmann equations, but lead to different pre-
dictions for the change in scale of the global dynamics.
The optical properties of spatially flat models that obey
Condition II were considered in [1, 2] [14]. In these papers
detailed calculations of the redshifts and luminosity dis-
tances that would be seen by observers in these models
were performed, both with and without a cosmological
constant. Large deviations from the predictions of the
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corresponding quantities in FLRW models were found,
and the effects that this could have on cosmological pa-
rameter estimation were considered [2]. This line of study
was generalized to spatially curved models in [6].
Here we study the optical properties of spatially flat

Lindquist–Wheeler models using Condition I of [3]. It has
recently been shown that the change in scale predicted
by positively curved LW models constructed using Con-
dition I is in good keeping with the corresponding exact
solutions of Einstein’s equations, including back-reaction
[9]. It has also been shown that spatially flat LW models
constructed using Condition I provide a good description
of the global evolution of space–time when their cells are
much smaller than the Hubble radius, and much larger
than the Schwarzschild radius of the central masses [8].
Condition II does not provide a good description of the
space–time in either of these cases. We consider this to
provide sufficient motivation to explore the optical prop-
erties of LW models that are constructed using Condition
I, rather than those of the apparently less favorable Con-
dition II that were studied in [1, 2].
In Section II we briefly describe the way in which the

LW models are constructed, paying particular attention
to the difference between Condition I and Condition II
of [3]. In Section III we then recap on how observational
quantities such as redshifts and luminosity distances are
calculated in these models. In Section IV we show the
results of using Condition I when calculating distance
measures and redshifts in the spatially flat models. It
is found that deviations from the corresponding quanti-
ties in spatially flat FLRW models are typically <∼ 3% at
z <∼ 1, in stark contrast to the results found when using
Condition II [1, 2]. In Section V we discuss these results,
and their consequences for the validity and applicability
of the LW construction as a model of the Universe. We
conclude that the LWmodel provides a surprisingly accu-
rate model of both the cosmological dynamics (including
the back–reaction of structures) and optical properties of
the space–times associated with regularly spaced discrete
masses. The applicability of these ideas to more irregular
configurations of matter remains to be demonstrated.

II. THE MODEL

The LW models are constructed by tiling spaces of con-
stant curvature with regular polyhedra, and placing a
mass m at the center of each polyhedron. The geome-
try of the space–time within each cell is then calculated
under the assumption that the influence of the external
masses is spherically symmetric, and boundary spheres of
constant Schwarzschild radial distance r are allowed to
follow geodesics of the resulting geometry. This results
in the space–time around each mass being described as
Schwarzschild–de Sitter geometry. By specifying a re-
lation between the boundary spheres and the original
polyhedra one then has a dynamical lattice model of the
Universe.

In order to perform calculations one now requires mea-
sures of cosmological size and time. These are provided
in the positively curved case by the radius of the lattice
in an embedding Euclidean 4–space, and by the proper
time τ along the trajectories of the boundary spheres [3].
These concepts were extended to the case of spatially flat
and negatively curved lattices in [1]. The result is that
these lattices obey the evolution equation

ȧ2LW

a2LW

=
2m

a3LW f3(ψ)
−

k

a2LW

, (1)

where aLW = r/f(ψ) is the size of the lattice (in the
original 3–space of constant curvature, to which the tra-
jectories of the spherical boundaries are made to be or-
thogonal), m is the ‘bare mass’ at the center of each cell,
k = 1, 0 or −1 depending on the spatial curvature of the
lattice, and over–dots denote differentiation with respect
to τ . The function f(ψ) = sin(ψ), ψ or sinh(ψ) for k = 1,
0 or −1, respectively, where ψ is a constant (the angle
subtended by a single spherical boundary at the origin of
the embedding space when k = 1).
The precise value of ψ depends on the lattice that

is being constructed (see Appendix A of [1] for all the
possible tilings of constant curvature 3–spaces with
regular polyhedra), and the way in which the lattice cells
are identified with boundary spheres. Lindquist and
Wheeler suggested two possible conditions for achieving
this:

Condition I: The boundary sphere shall occupy the
same volume of the lattice as each cell.

Condition II: The boundary sphere associated with
each mass shall just touch the boundary
sphere of all its nearest neighbors.

These two possibilities are illustrated in Figure 1. The
value of ψ for each of the six possible lattices that can be
constructed in a positively curved space are then given
in Table IV of [3]. In a flat space the only possible lattice

has ψ = ( 6
π
)

1

3 ≃ 1.24 under Condition I, and ψ = 1
under Condition II. Throughout this paper we will refer
to lattices constructed using Condition I as Type I, and
those constructed using Condition II as Type II.
It has been shown in [8] that when the inter–mass sep-

aration is small compared to the Hubble scale, but large
compared to the Schwarzschild radius of the masses, that
Type I lattices accurately reproduce the large–scale dy-
namics of more accurate solutions to Einstein’s equa-
tions. Using exact solutions, Type I lattices have also
been shown in [9] to accurately predict the scale of the
maximum of expansion of positively curved universes (in-
cluding the predicted deviation from the corresponding
FLRW solutions). Type II lattices have been shown to
produce inaccurate results for the global dynamics of the
space–time in both of these cases.
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(a) Type I (b) Type II

FIG. 1: Illustration of Type I and Type II lattices, constructed using Condition I and Condition II.

III. OPTICAL PROPERTIES

The optical properties of spatially flat Type II lattice
models were discussed in [1]. Here we wish to study the
optical properties of the Type I models, which have been
shown to more faithfully reproduce the correct global dy-
namics [8, 9].
The equations of motion for null particles in

Schwarzschild–de Sitter geometry, as appropriate for this
study, are [1]

B =

(

1−
2m

r
−

Λ

3
r2
)

τ̇ +

√

2m

r
+

Λ

3
r2ṙ (2)

ṙ2 = B2 −
J2

r2

(

1−
2m

r
−

Λ

3
r2
)

(3)

θ̇2 =
J2

r4
−

J2
φ

r4 sin2 θ
(4)

φ̇ =
Jφ

r2 sin2 θ
, (5)

where B, J and Jφ are constants, over-dots denote differ-
entiation with respect to the affine parameter λ, and r, θ
and φ are radial and angular Schwarzschild coordinates.
The remaining quantities m and Λ are the bare mass at
the center of each cell and the cosmological constant.
We emphasize that care must be taken in propagat-

ing photons between lattice cells, and that it is not ap-
propriate to simply perform a translation of the spatial
coordinate system. Rather, one should ensure that in
the rest–space of observers at the cell boundary the di-
rection of the photon, and the energy of the photon, is
unchanged when leaving the first cell and entering the
next. This can be achieved by decomposing the tangent
vector to the null rays as

ka = (−ubk
b)(ua + na), (6)

where ua is the tangent vector to the trajectory of an ob-
server at the boundary, and na is a space-like vector that
satisfies nan

a = 1 and uan
a = 0. The energy of a photon

that is measured by this observer is then E = −uak
a,

and the photon direction is given by the two indepen-
dent components of na. Matching these three pieces of
information at the boundary is sufficient to determine B,
J and Jφ in the new cell, which completely specifies the
trajectory of the photon until it hits another cell bound-
ary, at which point a new matching is performed.
Two methods were proposed in [1] for how to choose

the ua that is required for this operation:

Method I: The tangent vector ua is taken to be that of
the freely falling observers who follow simi-
lar curves to the trajectory of the boundary
spheres.

Method II: The tangent vector ua at the cell boundary
is taken to be that of the non–geodesic ob-
servers who follow the trajectory of the cell
boundary at the point where the photons
cross it.

The first of these two methods is the least computation-
ally demanding, while the second is constructed to be
more accurate. In what follows we will therefore present
the results of numerical calculations using Method I,
pausing only to make comparisons with Method II in or-
der to gain an estimate of the systematic errors involved.
A more detailed description of these two methods is given
in [1], to which the reader is referred for details.
In order to calculate optical properties along bundles

of null geodesics we use the Sachs equations [10], which
in the present situation can be written as [1]

1

rA

d2rA
dλ2

+ σ∗σ = 0 (7)

dσ

dλ
+

2σ

rA

drA
dλ

=
3mJ2

r5
eiΨ, (8)

where rA is the angular diameter distance, σ is the com-
plex shear scalar, and Ψ is the complex phase of the term
driving the shear. As always, the luminosity distance is
then given by rL = (1 + z)2rA [11], and redshifts are
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(a) Redshifts along three example trajectories in a
Type I model, out to z ∼ 0.03.

(b) Redshifts in Type I models (dashed line), Type II
models (dotted line), and FLRW models (solid line).

FIG. 2: Redshifts in spatially flat LW models as a function of the corresponding redshift in FLRW cosmology.

given by

1 + z =
(−uaka)e
(−uaka)o

, (9)

where observers and sources follow curves with tangent
vector ua, photons follow curves with tangent vector ka,
and subscripts e and o denote quantities evaluated at
the point of emission and observation of the photons,
respectively. In what follows we take ua to be a family of
curves that are similar to the trajectory of the boundary
sphere of the lattice cell that they are in.

IV. RESULTS

Let us now consider the results of performing ray trac-
ing through models of Type I. We will first consider cases
with Λ = 0, and then cases with Λ 6= 0.

A. Models with Λ = 0

With ΩΛ = 0 the space–time inside each cell is de-
scribed locally as Schwarzschild geometry. In this case we
can propagate null trajectories through the lattice and
we find that for Milky Way sized objects separated by
∼ 1Mpc the resulting redshifts are as displayed in Figure
2. The calculated redshift is shown here as a function of
the expected redshift in the corresponding FLRW model.
The right–hand panel in Figure 2 shows redshift, z,

as a function of the redshift of objects at the same po-
sition in the corresponding FLRW model, zFLRW . The
results of using both Type I and Type II lattice models
are displayed in this plot, as well as the line z = zFLRW ,

for comparison. It is clear that the redshifts of distant
objects in LW models is strongly dependent on whether
Condition I or Condition II is applied. If we parameterize
the redshift in these models as

1 + z = (1 + zFLRW )〈γ〉 (10)

then we find that the results of using Condition I are well
modeled by 〈γ〉 ≃ 0.98, while using Condition II results
in 〈γ〉 ≃ 0.70 [1]. This is a significant difference, with
Condition I leading to results that are in much better
keeping with those obtained in standard FLRW.
The left–hand panel in Figure 2 shows three individ-

ual realizations of photon trajectories in LW models of
Type I. The direction of these trajectories is chosen at
random, and it can be seen that while they are not iden-
tical, they do oscillate around a mean value. This mean
is rapidly approached as the distance being observed over
is increased, as discussed in detail in [1]. Over the scales
plotted in the right–hand panel of Figure 2 these trajecto-
ries cannot be distinguished by eye. Example trajectories
at low z in Type II models are given in [1].
In Figure 3 we show the fractional difference in red-

shifts calculated using Method I or Method II in models
of Type I. It can be seen that these two different meth-
ods produce differences in redshift that are at the level of
<
∼ 1% out to distances that would correspond to z ∼ 2 in
the corresponding FLRW models. This is comparable to
the magnitude of the same quantity calculated in Type
II models (shown in Figure 8 of [1]), and provides evi-
dence for the validity of using the computationally less
expensive Method I when calculating observables in these
models at low redshifts.
Integration of the Sachs optical equations in Type I lat-

tice models proceeds in much the same way as the process
discussed in [1] for Type II models. The shear that builds
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FIG. 3: The fractional difference between redshifts calculated
using Method I and Method II in Type I LW models.

in the bundles of null geodesics is still dominated by ran-
dom events in which the photon trajectories pass close
to the central masses, and still performs a random walk.
The different condition used to construct the lattice in
the present case does not strongly affect this conclusion,
as the difference between Condition I and Condition II
amounts to a change in the location of the cell bound-
ary. The shearing of the bundles of null geodesics, on
the other hand, is dominated by the parts of the pho-
ton trajectories that are closest to the cell centers. For
Milky Way sized masses separated by ∼ 1Mpc we find
that shear has a negligible affect at low redshifts in mod-
els of Type I, as found for models of Type II in [1]. The
luminosity distance out to z ∼ 1 in the present case is
then well described by

rL ∼ z + 0.23z2 +O(z3), (11)

with a corresponding value for the deceleration parame-
ter of

q0 ≃ 0.53. (12)

This is a small deviation from the value of 1/2 expected
in a spatially–flat, dust–filled FLRW universe with no Λ,
but considerably less than the value of q0 ≃ 1.14 found
in models of Type II [1].
For further discussion of the effects of shear on distance

measures, and the formation of caustics, the reader is
referred to Section 5 of [1].

B. Models with Λ 6= 0

Let us now consider Type I lattice models with ΩΛ 6= 0.
Models of Type II with ΩΛ 6= 0 were considered in [2].
In this case the space–time geometry within each cell

is approximated locally as being Schwarzschild–de Sitter.

The first integrals of the equations of motion for null par-
ticles in this geometry are given in [2], and the propaga-
tion of photons between cells proceeds in a similar fashion
to the ΩΛ = 0 case. The redshift in these situations can
again be well modeled by Equation (10), but where the
new parameter is now given by 〈γ〉 = 0.98 + 0.017Ω1.4

Λ
.

This function is displayed graphically in Figure 4. The
corresponding quantity for Type II models can be found
in [2].

Using the redshift relation specified by Equation 10
and Figure 4 we can now calculate distance measures as
functions of redshift, as outlined in Section III. We will be
particularly interested in the distance modulus, which is
a useful quantity to compare to supernova observations.
This is defined as

∆dm = 5 log10

(

rA

rMilne
A

)

, (13)

where rMilne
A is the angular diameter distance in an open,

empty Milne universe with the same local Hubble rate.
This definition is equivalent to the magnitude of a source,
minus the magnitude it would have at the same redshift
in a Milne universe.

Fitting the LW models of Type I to the SNLS su-
pernova data [12] we find that the best fitting spatially
flat model has ΩΛ = 0.66 ± 0.05, while the best fit-
ting spatially flat FLRW model to the same data set has
ΩΛ = 0.74± 0.04. The distance modulus curves for these
two models are displayed in Figure 5. The correspond-
ing best fit value using Condition II is ΩΛ = 0.66± 0.04
[2]. Unlike the redshift relations, we therefore find that
the difference in the best fitting value of ΩΛ between
LW models constructed using Condition I and Condi-
tion II is not large. The fit to the data using Condi-
tion I is marginally worse than that found using Con-
dition II, however, with a difference in log likelihood of
|∆ lnL| ≃ 0.1 between them.

0.0 0.2 0.4 0.6 0.8 1.0
0.980

0.985

0.990

0.995

1.000

WL

XΓ
\

FIG. 4: 〈γ〉 as a function of ΩΛ, for models of Type I. These
values are much closer to the FLRW limit of 〈γ〉 = 1 than the
models of Type II.
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-0.5

0.0
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D
dm

FIG. 5: The best fitting spatially flat LW model of Type I (dotted line), and the best fitting spatially flat FLRW model (thin
line). The data represents 115 high and low redshift supernovae from SNLS [12], fitted to the LW model using the SALT light
curve fitter [13]. Einstein-de Sitter (dashed line) and de Sitter (thick line) models are also shown, for reference.

V. DISCUSSION

In this paper we have considered the optical proper-
ties of the Lindquist–Wheeler cosmological models con-
structed from a lattice of discrete masses. This study
builds on previous work that found large deviations from
the expected values derived from models that contain a
continuous distribution of matter [1, 2].
We find that the way in which the lattice is constructed

has considerable consequences for its optical properties.
In particular, using Condition I of [3] to construct lattice
models results in redshifts that are within a few percent
of the expected values from the corresponding FLRW
models. This should be compared with differences of ∼
1/3 at redshifts of z ∼ 1 that were found using Condition
II of [3]. Other aspects of the optical properties of these
models, however, are less sensitive to the way in which
the lattice is constructed. The accumulation of shear
along bundles of null geodesics, for example, is largely
unaffected. Interestingly, we also find that when Λ is
included in these models the best fitting value of ΩΛ to
supernova data is largely insensitive to the whether we
use Condition I or II. In either case ΩΛ is ∼ 10% less
than is required in FLRW cosmology, in order to fit the
same data.
Recent studies of cosmological solutions to Einstein’s

equations that contain discrete masses, rather than a con-
tinuous fluid, suggest that the Lindquist–Wheeler models
constructed using Condition I provide a good description
of the large–scale evolution of a universe filled with regu-

larly arranged discrete masses [8, 9]. It even appears that
they provide a reasonably good description of the back–
reaction that such structures should have on the large–
scale evolution of an initially homogeneous and isotropic
space (this effect being large for a small number of very
large masses, and small when very many small masses
are considered). The present study supports these results
by showing that LW lattice models can also accurately
reproduce the expected optical properties of a universe
filled with many low-mass, discrete, regularly arranged
masses [8].

Collectively, this evidence suggests to us that the LW
models constructed using Condition I provide a simple
and reasonably accurate way to model very highly in-
homogeneous distributions of matter [15]. They do this
without a priori assuming any background geometry for
the Universe, and have been shown to give information
that cannot be obtained from exact FLRW solutions
alone [9]. The LW models therefore appear to us to be a
promising way to investigate the possible effects of non–
linear density fluctuations in relativistic cosmology.
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