23 research outputs found

    Measuring cerebrovascular reactivity: what stimulus to use?

    Full text link
    Cerebrovascular reactivity is the change in cerebral blood flow in response to a vasodilatory or vasoconstrictive stimulus. Measuring variations of cerebrovascular reactivity between different regions of the brain has the potential to not only advance understanding of how the cerebral vasculature controls the distribution of blood flow but also to detect cerebrovascular pathophysiology. While there are standardized and repeatable methods for estimating the changes in cerebral blood flow in response to a vasoactive stimulus, the same cannot be said for the stimulus itself. Indeed, the wide variety of vasoactive challenges currently employed in these studies impedes comparisons between them. This review therefore critically examines the vasoactive stimuli in current use for their ability to provide a standard repeatable challenge and for the practicality of their implementation. Such challenges include induced reductions in systemic blood pressure, and the administration of vasoactive substances such as acetazolamide and carbon dioxide. We conclude that many of the stimuli in current use do not provide a standard stimulus comparable between individuals and in the same individual over time. We suggest that carbon dioxide is the most suitable vasoactive stimulus. We describe recently developed computer-controlled MRI compatible gas delivery systems which are capable of administering reliable and repeatable vasoactive CO2 stimuli

    Carbon dioxide-sensing in organisms and its implications for human disease

    No full text
    The capacity of organisms to sense changes in the levels of internal and external gases and to respond accordingly is central to a range of physiologic and pathophysiologic processes. Carbon dioxide, a primary product of oxidative metabolism is one such gas that can be sensed by both prokaryotic and eukaryotic cells and in response to altered levels, elicit the activation of multiple adaptive pathways. The outcomes of activating CO2-sensitive pathways in various species include increased virulence of fungal and bacterial pathogens, prey-seeking behavior in insects as well as taste perception, lung function, and the control of immunity in mammals. In this review, we discuss what is known about the mechanisms underpinning CO2 sensing across a range of species and consider the implications of this for physiology, disease progression, and the possibility of developing new therapeutics for inflammatory and infectious disease.Deposited by bulk impor
    corecore