7,428 research outputs found

    Chlorinated auxins–how does Arabidopsis thaliana deal with them?

    No full text
    Plant hormones have various functions in plants and play crucial roles in all developmental and differentiation stages. Auxins constitute one of the most important groups with the major representative indole-3-acetic acid (IAA). A halogenated derivate of IAA, 4-chloro-indole-3-acetic acid (4-Cl-IAA), has previously been identified in Pisum sativum and other legumes. While the enzymes responsible for the halogenation of compounds in bacteria and fungi are well studied, the metabolic pathways leading to the production of 4-Cl-IAA in plants, especially the halogenating reaction, are still unknown. Therefore, bacterial flavin-dependent tryptophan-halogenase genes were transformed into the model organism Arabidopsis thaliana. The type of chlorinated indole derivatives that could be expected was determined by incubating wild type A. thaliana with different Cl-tryptophan derivatives. We showed that, in addition to chlorinated IAA, chlorinated IAA conjugates were synthesized. Concomitantly, we found that an auxin conjugate synthetase (GH3.3 protein) from A. thaliana was able to convert chlorinated IAAs to amino acid conjugates in vitro. In addition, we showed that the production of halogenated tryptophan (Trp), indole-3-acetonitrile (IAN) and IAA is possible in transgenic A. thaliana in planta with the help of the bacterial halogenating enzymes. Furthermore, it was investigated if there is an effect (i) of exogenously applied Cl-IAA and Cl-Trp and (ii) of endogenously chlorinated substances on the growth phenotype of the plants

    Entanglement in a molecular three-qubit system

    Full text link
    We study the entanglement properties of a molecular three-qubit system described by the Heisenberg spin Hamiltonian with anisotropic exchange interactions and including an external magnetic field. The system exhibits first order quantum phase transitions by tuning two parameters, xx and yy, of the Hamiltonian to specific values. The three-qubit chain is open ended so that there are two types of pairwise entanglement : nearest-neighbour (n.n.) and next-nearest-neighbour (n.n.n.). We calculate the ground and thermal state concurrences, quantifying pairwise entanglement, as a function of the parameters xx, yy and the temperature TT. The entanglement threshold and gap temperatures are also determined as a function of the anisotropy parameter xx. The results obtained are of relevance in understanding the entanglement features of the recently engineered molecular Cr7NiCr_{7}Ni-Cu2+Cu^{2+}-Cr7NiCr_{7}Ni complex which serves as a three-qubit system at sufficiently low temperatures.Comment: 9 pages, 13 figures, revtex

    Overcoming synecdoche: why practice development and quality improvement approaches should be better integrated

    Get PDF
    Commentary on: Lavery, G. (2016) Quality improvement – rival or ally of practice development? International Practice Development Journal. Vol. 6. No. 1. Article 1

    Short gamma-ray bursts within 200 Mpc

    Get PDF
    We present a systematic search for short-duration gamma-ray bursts (GRBs) in the local Universe based on 14 yr of observations with the Neil Gehrels Swift Observatory. We cross-correlate the GRB positions with the GLADE catalogue of nearby galaxies, and find no event at a distance â‰Č100 Mpc and four plausible candidates in the range 100 Mpc â‰Č D â‰Č 200 Mpc. Although affected by low statistics, this number is higher than the one expected for chance alignments to random galaxies, and possibly suggests a physical association between these bursts and nearby galaxies. By assuming a local origin, we use these events to constrain the range of properties for X-ray counterparts of neutron star mergers. Optical upper limits place tight constraints on the onset of a blue kilonova, and imply either low masses (⁠â‰Č10−3M⊙⁠) of lanthanide-poor ejecta or unfavorable orientations (Ξ_(obs) ≳ 30 deg). Finally, we derive that the all-sky rate of detectable short GRBs within 200 Mpc is 1.3^(+1.7)_(−0.8) yr⁻Âč (68 per cent confidence interval), and discuss the implications for the GRB outflow structure. If these candidates are instead of cosmological origin, we set a upper limit of â‰Č2.0 yr⁻Âč (90 per cent confidence interval) to the rate of nearby events detectable with operating gamma-ray observatories, such as Swift and Fermi

    The FĂ­schlĂĄr digital video system: a digital library of broadcast TV programmes

    Get PDF
    FĂ­schlĂĄr is a system for recording, indexing, browsing and playback of broadcast TV programmes which has been operational on our University campus for almost 18 months. In this paper we give a brief overview of how the system operates, how TV programmes are organised for browse/playback and a short report on the system usage by over 900 users in our University

    Parallel transport in an entangled ring

    Get PDF
    This paper defines a notion of parallel transport in a lattice of quantum particles, such that the transformation associated with each link of the lattice is determined by the quantum state of the two particles joined by that link. We focus particularly on a one-dimensional lattice--a ring--of entangled rebits, which are binary quantum objects confined to a real state space. We consider states of the ring that maximize the correlation between nearest neighbors, and show that some correlation must be sacrificed in order to have non-trivial parallel transport around the ring. An analogy is made with lattice gauge theory, in which non-trivial parallel transport around closed loops is associated with a reduction in the probability of the field configuration. We discuss the possibility of extending our result to qubits and to higher dimensional lattices.Comment: 31 pages, no figures; v2 includes a new example of a qubit rin

    An inducible CiliaGFP mouse model for in vivo visualization and analysis of cilia in live tissue

    Get PDF
    BACKGROUND: Cilia are found on nearly every cell type in the mammalian body, and have been historically classified as either motile or immotile. Motile cilia are important for fluid and cellular movement; however, the roles of non-motile or primary cilia in most tissues remain unknown. Several genetic syndromes, called the ciliopathies, are associated with defects in cilia structure or function and have a wide range of clinical presentations. Much of what we know about the formation and maintenance of cilia comes from model systems like C. elegans and Chalmydomonas. Studies of mammalian cilia in live tissues have been hampered by difficulty visualizing them. RESULTS: To facilitate analyses of mammalian cilia function we generated an inducible Cilia(GFP) mouse by targeting mouse cDNA encoding a cilia-localized protein somatostatin receptor 3 fused to GFP (Sstr3::GFP) into the ROSA26 locus. In this system, Sstr3::GFP is expressed from the ubiquitous ROSA26 promoter after Cre mediated deletion of an upstream Neo cassette flanked by lox P sites. Fluorescent cilia labeling was observed in a variety of live tissues and after fixation. Both cell-type specific and temporally regulated cilia labeling were obtained using multiple Cre lines. The analysis of renal cilia in anesthetized live mice demonstrates that cilia commonly lay nearly parallel to the apical surface of the tubule. In contrast, in more deeply anesthetized mice the cilia display a synchronized, repetitive oscillation that ceases upon death, suggesting a relationship to heart beat, blood pressure or glomerular filtration. CONCLUSIONS: The ability to visualize cilia in live samples within the Cilia(GFP) mouse will greatly aid studies of ciliary function. This mouse will be useful for in vivo genetic and pharmacological screens to assess pathways regulating cilia motility, signaling, assembly, trafficking, resorption and length control and to study cilia regulated physiology in relation to ciliopathy phenotypes

    Brownian motion meets Riemann curvature

    Full text link
    The general covariance of the diffusion equation is exploited in order to explore the curvature effects appearing on brownian motion over a d-dimensional curved manifold. We use the local frame defined by the so called Riemann normal coordinates to derive a general formula for the mean-square geodesic distance (MSD) at the short-time regime. This formula is written in terms of O(d)O(d) invariants that depend on the Riemann curvature tensor. We study the n-dimensional sphere case to validate these results. We also show that the diffusion for positive constant curvature is slower than the diffusion in a plane space, while the diffusion for negative constant curvature turns out to be faster. Finally the two-dimensional case is emphasized, as it is relevant for the single particle diffusion on biomembranes.Comment: 16 pages and 3 figure

    Atomistic modeling of amorphous silicon carbide: An approximate first-principles study in constrained solution space

    Get PDF
    Localized basis ab initio molecular dynamics simulation within the density functional framework has been used to generate realistic configurations of amorphous silicon carbide (a-SiC). Our approach consists of constructing a set of smart initial configurations that conform essential geometrical and structural aspects of the materials obtained from experimental data, which is subsequently driven via first-principles force-field to obtain the best solution in a reduced solution space. A combination of a priori information (primarily structural and topological) along with the ab-initio optimization of the total energy makes it possible to model large system size (1000 atoms) without compromising the quantum mechanical accuracy of the force-field to describe the complex bonding chemistry of Si and C. The structural, electronic and the vibrational properties of the models have been studied and compared to existing theoretical models and available data from experiments. We demonstrate that the approach is capable of producing large, realistic configurations of a-SiC from first-principles simulation that display excellent structural and electronic properties of a-SiC. Our study reveals the presence of predominant short-range order in the material originating from heteronuclear Si-C bonds with coordination defect concentration as small as 5% and the chemical disorder parameter of about 8%.Comment: 16 pages, 7 figure
    • 

    corecore