2,200 research outputs found

    Changing social contracts in climate-change adaptation

    Get PDF
    Risks from extreme weather events are mediated through state, civil society and individual action 1 , 2 . We propose evolving social contracts as a primary mechanism by which adaptation to climate change proceeds. We use a natural experiment of policy and social contexts of the UK and Ireland affected by the same meteorological event and resultant flooding in November 2009. We analyse data from policy documents and from household surveys of 356 residents in western Ireland and northwest England. We find significant differences between perceptions of individual responsibility for protection across the jurisdictions and between perceptions of future risk from populations directly affected by flooding events. These explain differences in stated willingness to take individual adaptive actions when state support retrenches. We therefore show that expectations for state protection are critical in mediating impacts and promoting longer-term adaptation. We argue that making social contracts explicit may smooth pathways to effective and legitimate adaptation

    Liquid crystals for luminescent concentrators: a review

    Get PDF
    Luminescent optical concentrators are thin films containing fluorescent dyes that enable light collection over a wide field of view without the need to track the path of the Sun. However, a disadvantage when using luminescent concentrators is that the performance is often impeded by surface losses through these films. Liquid-crystal (LC) hosts are attractive for luminescent concentrators, as they impart, at the very least, an orientational ordering to the transition dipole moment of the dyes dispersed within these films. This enables the directivity of both the absorption and emission and can reduce surface losses by, for example, adopting the homeotropic alignment of the LC director. This article reviews the developments and applications of LCs to luminescent optical concentrators and describes the strategies that have been introduced to further combat losses by decoupling the absorption and emission processes through Förster energy transfer, the approaches employed to enhance the chemical structures of the dyes, and the methods of using alternative LC phases and external configurations. The review presents a comprehensive summary of the material combinations and the techniques that have been considered in the development of LC-based concentrator films and concludes with a discussion about the future perspectives for these exciting optical concentrators

    Process chain simulation of laser powder bed fusion including heat treatment and surface hardening

    Get PDF
    Additive manufacturing (AM) has enabled the creation of geometrically complex parts for a range of industries. However, the nature of AM often requires multiple post processing techniques to be carried out to reach the desired material properties or required surface finish. This often involves heat treatment (HT), shot peening (SP) or laser shock peening (LSP). To date, hardly any process chain modelling has been carried out on manufacturing applications with AM. This investigation focuses on the finite element (FE) modelling of the complete manufacturing process chain of an AM impeller made of IN718, including the AM, HT, LSP and SP processes. The particular AM process applied to build the impeller is laser powder bed fusion (L-PBF). Each FE process is validated individually against experimental data before being applied to the impeller process chain. The validated data from each process is mapped to the next process in the chain to investigate the combined effects of manufacturing and post processing techniques. Results have shown that high tensile residual stresses induced by AM can be reduced by approximately 75% by applying HT. SP and LSP processes can further modify remaining tensile residual stresses after HT by inducing a layer of compressive stresses at the surface. In summary, this research work has demonstrated that the simulation of AM process chains using finite element techniques is sufficiently mature to support the product and process development of industrial AM components

    Evaluation of the impact of a school gardening intervention on children's fruit and vegetable intake: a randomised controlled trial.

    Get PDF
    Background: Current academic literature suggests that school gardening programmes can provide an interactive environment with the potential to change children’s fruit and vegetable intake. This is the first cluster randomised controlled trial (RCT) designed to evaluate whether a school gardening programme can have an effect on children’s fruit and vegetable intake. Methods: The trial included children from 23 schools; these schools were randomised into two groups, one to receive the Royal Horticultural Society (RHS)-led intervention and the other to receive the less involved Teacher-led intervention. A 24-hour food diary (CADET) was used to collect baseline and follow-up dietary intake 18 months apart. Questionnaires were also administered to evaluate the intervention implementation. Results: A total of 641 children completed the trial with a mean age of 8.1 years (95% CI: 8.0, 8.4). The unadjusted results from multilevel regression analysis revealed that for combined daily fruit and vegetable intake the Teacher-led group had a higher daily mean change of 8 g (95% CI: −19, 36) compared to the RHS-led group -32 g (95% CI: −60, −3). However, after adjusting for possible confounders this difference was not significant (intervention effect: −40 g, 95% CI: −88, 1; p = 0.06). The adjusted analysis of process measures identified that if schools improved their gardening score by 3 levels (a measure of school gardening involvement - the scale has 6 levels from 0 ‘no garden’ to 5 ‘community involvement’), irrespective of group allocation, children had, on average, a daily increase of 81 g of fruit and vegetable intake (95% CI: 0, 163; p = 0.05) compared to schools that had no change in gardening score. Conclusions: This study is the first cluster randomised controlled trial designed to evaluate a school gardening intervention. The results have found very little evidence to support the claims that school gardening alone can improve children’s daily fruit and vegetable intake. However, when a gardening intervention is implemented at a high level within the school it may improve children’s daily fruit and vegetable intake by a portion. Improving children’s fruit and vegetable intake remains a challenging task

    Inhibition of the tyrosine phosphatase SHP-2 suppresses angiogenesis in vitro and in vivo

    Get PDF
    Endothelial cell survival is indispensable to maintain endothelial integrity and initiate new vessel formation. We investigated the role of SHP-2 in endothelial cell survival and angiogenesis in vitro as well as in vivo. SHP-2 function in cultured human umbilical vein and human dermal microvascular endothelial cells was inhibited by either silencing the protein expression with antisense-oligodesoxynucleotides or treatment with a pharmacological inhibitor (PtpI IV). SHP-2 inhibition impaired capillary-like structure formation (p < 0.01; n = 8) in vitro as well as new vessel growth ex vivo (p < 0.05; n = 10) and in vivo in the chicken chorioallantoic membrane (p < 0.01, n = 4). Additionally, SHP-2 knock-down abrogated fibroblast growth factor 2 (FGF-2)-dependent endothelial proliferation measured by MTT reduction ( p ! 0.01; n = 12). The inhibitory effect of SHP-2 knock-down on vessel growth was mediated by increased endothelial apoptosis ( annexin V staining, p ! 0.05, n = 9), which was associated with reduced FGF-2-induced phosphorylation of phosphatidylinositol 3-kinase (PI3-K), Akt and extracellular regulated kinase 1/2 (ERK1/2) and involved diminished ERK1/2 phosphorylation after PI3-K inhibition (n=3). These results suggest that SHP-2 regulates endothelial cell survival through PI3-K-Akt and mitogen-activated protein kinase pathways thereby strongly affecting new vessel formation. Thus, SHP-2 exhibits a pivotal role in angiogenesis and may represent an interesting target for therapeutic approaches controlling vessel growth. Copyright (C) 2007 S. Karger AG, Basel

    Results of the randomized phase IIB ARCTIC trial of low dose Rituximab in previously untreated CLL

    Get PDF
    ARCTIC was a multi-center, randomized-controlled, open, phase IIB non-inferiority trial in previously untreated Chronic Lymphocytic Leukemia (CLL). Conventional frontline therapy in fit patients is fludarabine, cyclophosphamide and rituximab (FCR). The trial hypothesized that including mitoxantrone with low-dose rituximab (FCM-miniR) would be non-inferior to FCR. 200 patients were recruited to assess the primary endpoint of complete remission (CR) rates according to IWCLL criteria. Secondary endpoints were progression-free survival (PFS), overall survival (OS), overall response rate, minimal residual disease (MRD) negativity, safety and cost-effectiveness. The trial closed following the pre-planned interim analysis. At final analysis, CR rates were 76% FCR vs 55% FCM-miniR [adjusted odds-ratio: 0.37; 95% CI: 0.19–0.73]. MRD-negativity rates were 54% FCR vs 44% FCM-miniR. More participants experienced Serious Adverse Reactions with FCM-miniR (49%) compared to FCR (41%). There are no significant differences between the treatment groups for PFS and OS. FCM-miniR is not expected to be cost-effective over a lifetime horizon. In summary, FCM-miniR is less well tolerated than FCR with an inferior response and MRD-negativity rate and increased toxicity, and will not be taken forward into a confirmatory trial. The trial demonstrated that oral FCR yields high response rates compared to historical series with intravenous chemotherapy

    Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer

    Get PDF
    Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95±5% and have potential to serve as the basis of spin-logic and network implementations
    corecore