10,846 research outputs found

    All-optical memory based on the injection locking bistability of a two-color laser diode

    Full text link
    We study the injection locking bistability of a specially engineered two-color semiconductor Fabry-Perot laser. Oscillation in the uninjected primary mode leads to a bistability of single mode and two-color equilibria. With pulsed modulation of the injected power we demonstrate an all-optical memory element based on this bistability, where the uninjected primary mode is switched with 35 dB intensity contrast. Using experimental and theoretical analysis, we describe the associated bifurcation structure, which is not found in single mode systems with optical injection.Comment: 5 pages, 5 figure

    Towards predicting post-editing productivity

    Get PDF
    Machine translation (MT) quality is generally measured via automatic metrics, producing scores that have no meaning for translators who are required to post-edit MT output or for project managers who have to plan and budget for transla- tion projects. This paper investigates correlations between two such automatic metrics (general text matcher and translation edit rate) and post-editing productivity. For the purposes of this paper, productivity is measured via processing speed and cognitive measures of effort using eye tracking as a tool. Processing speed, average fixation time and count are found to correlate well with the scores for groups of segments. Segments with high GTM and TER scores require substantially less time and cognitive effort than medium or low-scoring segments. Future research involving score thresholds and confidence estimation is suggested

    Observation of quantum interference as a function of Berry's phase in a complex Hadamard optical network

    Full text link
    Emerging models of quantum computation driven by multi-photon quantum interference, while not universal, may offer an exponential advantage over classical computers for certain problems. Implementing these circuits via geometric phase gates could mitigate requirements for error correction to achieve fault tolerance while retaining their relative physical simplicity. We report an experiment in which a geometric phase is embedded in an optical network with no closed-loops, enabling quantum interference between two photons as a function of the phase.Comment: Comments welcom

    Antiphase dynamics in a multimode semiconductor laser with optical injection

    Get PDF
    A detailed experimental study of antiphase dynamics in a two-mode semiconductor laser with optical injection is presented. The device is a specially designed Fabry-Perot laser that supports two primary modes with a THz frequency spacing. Injection in one of the primary modes of the device leads to a rich variety of single and two-mode dynamical scenarios, which are reproduced with remarkable accuracy by a four dimensional rate equation model. Numerical bifurcation analysis reveals the importance of torus bifurcations in mediating transitions to antiphase dynamics and of saddle-node of limit cycle bifurcations in switching of the dynamics between single and two-mode regimes.Comment: 7 pages, 9 figure

    The Extent and Cause of the Pre-White Dwarf Instability Strip

    Get PDF
    One of the least understood aspects of white dwarf evolution is the process by which they are formed. We are aided, however, by the fact that many H- and He-deficient pre-white dwarfs (PWDs) are multiperiodic g-mode pulsators. Pulsations in PWDs provide a unique opportunity to probe their interiors, which are otherwise inaccesible to direct observation. Until now, however, the nature of the pulsation mechanism, the precise boundaries of the instability strip, and the mass distribution of the PWDs were complete mysteries. These problems must be addressed before we can apply knowledge of pulsating PWDs to improve understanding of white dwarf formation. This paper lays the groundwork for future theoretical investigations of these stars. In recent years, Whole Earth Telescope observations led to determination of mass and luminosity for the majority of the (non-central star) PWD pulsators. With these observations, we identify the common properties and trends PWDs exhibit as a class. We find that pulsators of low mass have higher luminosity, suggesting the range of instability is highly mass-dependent. The observed trend of decreasing periods with decreasing luminosity matches a decrease in the maximum (standing-wave) g-mode period across the instability strip. We show that the red edge can be caused by the lengthening of the driving timescale beyond the maximum sustainable period. This result is general for ionization-based driving mechanisms, and it explains the mass-dependence of the red edge. The observed form of the mass-dependence provides a vital starting point for future theoretical investigations of the driving mechanism. We also show that the blue edge probably remains undetected because of selection effects arising from rapid evolution.Comment: 40 pages, 6 figures, accepted by ApJ Oct 27, 199

    Swift observations of the 2006 outburst of the recurrent nova RS Ophiuchi: I. Early X-ray emission from the shocked ejecta and red giant wind

    Get PDF
    RS Ophiuchi began its latest outburst on 2006 February 12. Previous outbursts have indicated that high velocity ejecta interact with a pre-existing red giant wind, setting up shock systems analogous to those seen in Supernova Remnants. However, in the previous outburst in 1985, X-ray observations did not commence until 55 days after the initial explosion. Here we report on Swift observations covering the first month of the 2006 outburst with the Burst Alert (BAT) and X-ray Telescope (XRT) instruments. RS Oph was clearly detected in the BAT 14-25 keV band from t=0 to t6t\sim6 days. XRT observationsfrom 0.3-10 keV, started at 3.17 days after outburst. The rapidly evolving XRT spectra clearly show the presence of both line and continuum emission which can be fitted by thermal emission from hot gas whose characteristic temperature, overlying absorbing column, [NH]W[N_H]_W, and resulting unabsorbed total flux decline monotonically after the first few days. Derived shock velocities are in good agreement with those found from observations at other wavelengths. Similarly, [NH]W[N_H]_W is in accord with that expected from the red giant wind ahead of the forward shock. We confirm the basic models of the 1985 outburst and conclude that standard Phase I remnant evolution terminated by t10t\sim10 days and the remnant then rapidly evolved to display behaviour characteristic of Phase III. Around t=26 days however, a new, luminous and highly variable soft X-ray source began to appear whose origin will be explored in a subsequent paper.Comment: 20 pages, 4 figures (2 updated), accepted by Ap

    Limitations of the Standard Gravitational Perfect Fluid Paradigm

    Full text link
    We show that the standard perfect fluid paradigm is not necessarily a valid description of a curved space steady state gravitational source. Simply by virtue of not being flat, curved space geometries have to possess intrinsic length scales, and such length scales can affect the fluid structure. For modes of wavelength of order or greater than such scales eikonalized geometrical optics cannot apply and rays are not geodesic. Covariantizing thus entails not only the replacing of flat space functions by covariant ones, but also the introduction of intrinsic scales that were absent in flat space. In principle it is thus unreliable to construct the curved space energy-momentum tensor as the covariant generalization of a geodesic-based flat spacetime energy-momentum tensor. By constructing the partition function as an incoherent average over a complete set of modes of a scalar field propagating in a curved space background, we show that for the specific case of a static, spherically symmetric geometry, the steady state energy-momentum tensor that ensues will in general be of the form Tμν=(ρ+p)UμUν+pgμν+πμνT_{\mu\nu}=(\rho+p)U_{\mu}U_{\nu}+pg_{\mu\nu}+\pi_{\mu\nu} where the anisotropic πμν\pi_{\mu\nu} is a symmetric, traceless rank two tensor which obeys Uμπμν=0U^{\mu}\pi_{\mu\nu}=0. Such a πμν\pi_{\mu\nu} type term is absent for an incoherently averaged steady state fluid in a spacetime where there are no intrinsic length scales, and in principle would thus be missed in a covariantizing of a flat spacetime TμνT_{\mu\nu}. While the significance of such πμν\pi_{\mu\nu} type terms would need to be evaluated on a case by case basis, through the use of kinetic theory we reassuringly find that the effect of such πμν\pi_{\mu\nu} type terms is small for weak gravity stars where perfect fluid sources are commonly used.Comment: Final version to appear in General Relativity and Gravitation (the final publication is available at http://www.springerlink.com). 29 pages, 1 figur

    Domain size effects in Barkhausen noise

    Full text link
    The possible existence of self-organized criticality in Barkhausen noise is investigated theoretically through a single interface model, and experimentally from measurements in amorphous magnetostrictive ribbon Metglas 2605TCA under stress. Contrary to previous interpretations in the literature, both simulation and experiment indicate that the presence of a cutoff in the avalanche size distribution may be attributed to finite size effects.Comment: 5 pages, 3 figures, submitted so Physical Review

    Preparation of Knill-Laflamme-Milburn states using tunable controlled phase gate

    Full text link
    A specific class of partially entangled states known as Knill-Laflamme-Milburn states (or KLM states) has been proved to be useful in relation to quantum information processing [Knill et al., Nature 409, 46 (2001)]. Although the usage of such states is widely investigated, considerably less effort has been invested into experimentally accessible preparation schemes. This paper discusses the possibility to employ a tunable controlled phase gate to generate an arbitrary Knill-Laflamme-Milburn state. In the first part, the idea of using the controlled phase gate is explained on the case of two-qubit KLM states. Optimization of the proposed scheme is then discussed for the framework of linear optics. Subsequent generalization of the scheme to arbitrary n-qubit KLM state is derived in the second part of this paper.Comment: 5 pages, 4 figures, accepted in Journal of Physics
    corecore