14 research outputs found

    Quantifying regional α -synuclein, amyloid β, and tau accumulation in Lewy body dementia

    Get PDF
    OBJECTIVE: Parkinson disease (PD) is defined by the accumulation of misfolded α-synuclein (α-syn) in Lewy bodies and Lewy neurites. It affects multiple cortical and subcortical neuronal populations. The majority of people with PD develop dementia, which is associated with Lewy bodies in neocortex and referred to as Lewy body dementia (LBD). Other neuropathologic changes, including amyloid β (Aβ) and tau accumulation, occur in some LBD cases. We sought to quantify α-syn, Aβ, and tau accumulation in neocortical, limbic, and basal ganglia regions. METHODS: We isolated insoluble protein from fresh frozen postmortem brain tissue samples for eight brains regions from 15 LBD, seven Alzheimer disease (AD), and six control cases. We measured insoluble α-syn, Aβ, and tau with recently developed sandwich ELISAs. RESULTS: We detected a wide range of insoluble α-syn accumulation in LBD cases. The majority had substantial α-syn accumulation in most regions, and dementia severity correlated with neocortical α-syn. However, three cases had low neocortical levels that were indistinguishable from controls. Eight LBD cases had substantial Aβ accumulation, although the mean Aβ level in LBD was lower than in AD. The presence of Aβ was associated with greater α-syn accumulation. Tau accumulation accompanied Aβ in only one LBD case. INTERPRETATION: LBD is associated with insoluble α-syn accumulation in neocortical regions, but the relatively low neocortical levels in some cases suggest that other changes contribute to impaired function, such as loss of neocortical innervation from subcortical regions. The correlation between Aβ and α-syn accumulation suggests a pathophysiologic relationship between these two processes

    The 4D Nucleome Project [preprint]

    Get PDF
    The spatial organization of the genome and its dynamics contribute to gene expression and cellular function in normal development as well as in disease. Although we are increasingly well equipped to determine a genome\u27s sequence and linear chromatin composition, studying the three-dimensional organization of the genome with high spatial and temporal resolution remains challenging. The 4D Nucleome Network aims to develop and apply approaches to map the structure and dynamics of the human and mouse genomes in space and time with the long term goal of gaining deeper mechanistic understanding of how the nucleus is organized. The project will develop and benchmark experimental and computational approaches for measuring genome conformation and nuclear organization, and investigate how these contribute to gene regulation and other genome functions. Further efforts will be directed at applying validated experimental approaches combined with biophysical modeling to generate integrated maps and quantitative models of spatial genome organization in different biological states, both in cell populations and in single cells

    The SPARC Toroidal Field Model Coil Program

    Get PDF

    Recent Decisions

    No full text

    Recent Decisions

    No full text

    Origin of the eastern brownsnake, Pseudonaja textilis (Duméril, Bibron and Duméril) (Serpentes: Elapidae: Hydrophiinae) in New Guinea: evidence of multiple dispersals from Australia, and comments on the status of Pseudonaja textilis pughi Hoser 2003

    No full text
    Pseudonaja textilis is a widespread and common snake in eastern parts of Australia, but its distribution in New Guinea is poorly understood, and the origin of the New Guinea populations and its timing have been the subject of much speculation. Phylogenetic analysis of mitochondrial DNA sequences from three New Guinea populations of P. textilis indicates that New Guinea was colonised from two independent eastern and western migration routes most likely in the Pleistocene. One dispersal event from northern Queensland led to the populations in eastern New Guinea (Milne Bay, Oro and Central Provinces, Papua New Guinea), whereas another, from Arnhem Land to central southern New Guinea, led to the populations from the Merauke area, Indonesian Papua. The results are consistent with the effects of Pleistocene sea level changes on the physical geography of Australasia, and are thus suggestive of a natural rather than anthropogenic origin of the New Guinea populations. The taxonomic status of the New Guinean populations is discussed. Copyright © 2008 - Magnolia Press

    Super-enhancers delineate disease-associated regulatory nodes in T cells.

    No full text
    Enhancers regulate spatiotemporal gene expression and impart cell-specific transcriptional outputs that drive cell identity. Super-enhancers (SEs), also known as stretch-enhancers, are a subset of enhancers especially important for genes associated with cell identity and genetic risk of disease. CD4(+) T cells are critical for host defence and autoimmunity. Here we analysed maps of mouse T-cell SEs as a non-biased means of identifying key regulatory nodes involved in cell specification. We found that cytokines and cytokine receptors were the dominant class of genes exhibiting SE architecture in T cells. Nonetheless, the locus encoding Bach2, a key negative regulator of effector differentiation, emerged as the most prominent T-cell SE, revealing a network in which SE-associated genes critical for T-cell biology are repressed by BACH2. Disease-associated single-nucleotide polymorphisms for immune-mediated disorders, including rheumatoid arthritis, were highly enriched for T-cell SEs versus typical enhancers or SEs in other cell lineages. Intriguingly, treatment of T cells with the Janus kinase (JAK) inhibitor tofacitinib disproportionately altered the expression of rheumatoid arthritis risk genes with SE structures. Together, these results indicate that genes with SE architecture in T cells encompass a variety of cytokines and cytokine receptors but are controlled by a \u27guardian\u27 transcription factor, itself endowed with an SE. Thus, enumeration of SEs allows the unbiased determination of key regulatory nodes in T cells, which are preferentially modulated by pharmacological intervention. Nature 2015 Apr 23; 520(7548):588-62
    corecore