12 research outputs found

    Transient microbiota exposures activate dormant Escherichia coli infection in the bladder and drive severe outcomes of recurrent disease

    Get PDF
    Pathogens often inhabit the body asymptomatically, emerging to cause disease in response to unknown triggers. In the bladder, latent intracellular Escherichia coli reservoirs are regarded as likely origins of recurrent urinary tract infection (rUTI), a problem affecting millions of women worldwide. However, clinically plausible triggers that activate these reservoirs are unknown. Clinical studies suggest that the composition of a woman's vaginal microbiota influences her susceptibility to rUTI, but the mechanisms behind these associations are unclear. Several lines of evidence suggest that the urinary tract is routinely exposed to vaginal bacteria, including Gardnerella vaginalis, a dominant member of the vaginal microbiota in some women. Using a mouse model, we show that bladder exposure to G. vaginalis triggers E. coli egress from latent bladder reservoirs and enhances the potential for life-threatening outcomes of the resulting E. coli rUTI. Transient G. vaginalis exposures were sufficient to cause bladder epithelial apoptosis and exfoliation and interleukin-1-receptor-mediated kidney injury, which persisted after G. vaginalis clearance from the urinary tract. These results support a broader view of UTI pathogenesis in which disease can be driven by short-lived but powerful urinary tract exposures to vaginal bacteria that are themselves not "uropathogenic" in the classic sense. This "covert pathogenesis" paradigm may apply to other latent infections, (e.g., tuberculosis), or for diseases currently defined as noninfectious because routine culture fails to detect microbes of recognized significance

    Bladder exposure to Gardnerella activates host pathways necessary for Escherichia coli recurrent UTI

    Get PDF
    Recurrent urinary tract infections (rUTI) are a costly clinical problem affecting millions of women worldwide each year. The majority of rUTI cases are caused by uropathogeni

    A Journey Within a Journey: The Journey of Three Computer Learners on a Journey Down Under

    Get PDF
    This is the story of the journey of three literacy teachers learning about classroom use of computers and developing a computer-driven unit on Australian animals. As frightened as we were of technology, we wanted our students to have positive experiences with computers. We also wanted the computer to be a useful tool for our students rather than a meaningless rote activity. We wanted our students to use a variety of literacy materials, participate in many reading and writing responses, and interact in groups as they used the computer as one medium for learning. In this article we describe our learning process, along with the struggles as well as the benefits. As a result of our personal learning journey, an interactive unit was developed that transported students on a journey to Australia

    Low-dose inoculation of Escherichia coli achieves robust vaginal colonization and results in ascending infection accompanied by severe uterine inflammation in mice

    Get PDF
    Escherichia coli infection of the female reproductive tract is a significant cause of disease in humans and animals, but simple animal models are lacking. Here we report that vaginal inoculation of uropathogenic E. coli strains UTI89 and CFT073 in non-pregnant, estrogen-treated mice resulted in robust colonization of the vagina and uterine horns, whereas titers of the lab strain MG1655 were significantly lower. Non-estrogenized mice also became colonized, but there was more variation in titers. A dose of 104 colony-forming units (CFU) UTI89 was sufficient to result in colonization in all estrogenized mice, and we also observed bacterial transfer between inoculated and uninoculated estrogenized cage mates. UTI89 infection led to inflammation and leukocyte infiltration into the uterine horns as evidenced by tissue histology. Flow cytometry experiments revealed that neutrophil, monocyte and eosinophil populations were significantly increased in infected uterine horns. This model is a simple way to study host-pathogen interactions in E. coli vaginal colonization and uterine infection. There are immediate implications for investigators studying urinary tract infection using mouse models, as few E. coli are required to achieve reproductive colonization, resulting in an additional, underappreciated mucosal reservoir

    Mucosal infection rewires TNFÉ‘ signaling dynamics to skew susceptibility to recurrence

    Get PDF
    A mucosal infectious disease episode can render the host either more or less susceptible to recurrent infection, but the specific mechanisms that tip the balance remain unclear. We investigated this question in a mouse model of recurrent urinary tract infection and found that a prior bladder infection resulted in an earlier onset of tumor necrosis factor-alpha (TNFÉ‘)-mediated bladder inflammation upon subsequent bacterial challenge, relative to age-matched naive mice. However, the duration of TNFÉ‘ signaling activation differed according to whether the first infection was chronic (Sensitized) or self-limiting (Resolved). TNFÉ‘ depletion studies revealed that transient early-phase TNFÉ‘ signaling in Resolved mice promoted clearance of bladder-colonizing bacteria via rapid recruitment of neutrophils and subsequent exfoliation of infected bladder cells. In contrast, sustained TNFÉ‘ signaling in Sensitized mice prolonged damaging inflammation, worsening infection. This work reveals how TNFÉ‘ signaling dynamics can be rewired by a prior infection to shape diverse susceptibilities to future mucosal infections

    Phylogeographical Structure and Evolutionary History of Two Buggy Creek Virus Lineages in the Western Great Plains of North America

    Get PDF
    Buggy Creek virus (BCRV) is an unusual arbovirus within the western equine encephalitis complex of alphaviruses. Associated with cimicid swallow bugs (Oeciacus vicarius) as its vector and the cliff swallow (Petrochelidon pyrrhonota) and house sparrow (Passer domesticus) as its amplifying hosts, this virus is found primarily in the western Great Plains of North America at spatially discrete swallow nesting colonies. For 342 isolates collected in Oklahoma, Nebraska, Colorado, and North Dakota, from 1974 to 2007, we sequenced a 2076 bp region of the 26S subgenomic RNA structural glycoprotein coding region, and analyzed phylogenetic relationships, rates of evolution, demographical histories and temporal genetic structure of the two BCRV lineages found in the Great Plains. The two lineages showed distinct phylogeographical structure: one lineage was found in the southern Great Plains and the other in the northern Great Plains, and both occurred in Nebraska and Colorado. Within each lineage, there was additional latitudinal division into three distinct sublineages. One lineage is showing a long-term population decline. In comparing sequences taken from the same sites 8–30 years apart, in one case one lineage had been replaced by the other, and in the other cases there was little evidence of the same haplotypes persisting over time. The evolutionary rate of BCRV is in the order of 1.6–3.6 × 10–4 substitutions per site per year, similar to that estimated for other temperate-latitude alphaviruses. The phylogeography and evolution of BCRV could be better understood once we determine the nature of the ecological differences between the lineages

    Phylogeographical Structure and Evolutionary History of Two Buggy Creek Virus Lineages in the Western Great Plains of North America

    Get PDF
    Buggy Creek virus (BCRV) is an unusual arbovirus within the western equine encephalitis complex of alphaviruses. Associated with cimicid swallow bugs (Oeciacus vicarius) as its vector and the cliff swallow (Petrochelidon pyrrhonota) and house sparrow (Passer domesticus) as its amplifying hosts, this virus is found primarily in the western Great Plains of North America at spatially discrete swallow nesting colonies. For 342 isolates collected in Oklahoma, Nebraska, Colorado, and North Dakota, from 1974 to 2007, we sequenced a 2076 bp region of the 26S subgenomic RNA structural glycoprotein coding region, and analyzed phylogenetic relationships, rates of evolution, demographical histories and temporal genetic structure of the two BCRV lineages found in the Great Plains. The two lineages showed distinct phylogeographical structure: one lineage was found in the southern Great Plains and the other in the northern Great Plains, and both occurred in Nebraska and Colorado. Within each lineage, there was additional latitudinal division into three distinct sublineages. One lineage is showing a long-term population decline. In comparing sequences taken from the same sites 8–30 years apart, in one case one lineage had been replaced by the other, and in the other cases there was little evidence of the same haplotypes persisting over time. The evolutionary rate of BCRV is in the order of 1.6–3.6 × 10–4 substitutions per site per year, similar to that estimated for other temperate-latitude alphaviruses. The phylogeography and evolution of BCRV could be better understood once we determine the nature of the ecological differences between the lineages

    Uropathogenic Escherichia coli infection-induced epithelial trained immunity impacts urinary tract disease outcome

    Get PDF
    Previous urinary tract infections (UTIs) can predispose one to future infections; however, the underlying mechanisms affecting recurrence are poorly understood. We previously found that UTIs in mice cause differential bladder epithelial (urothelial) remodelling, depending on disease outcome, that impacts susceptibility to recurrent UTI. Here we compared urothelial stem cell (USC) lines isolated from mice with a history of either resolved or chronic uropathogenic Escherichia coli (UPEC) infection, elucidating evidence of molecular imprinting that involved epigenetic changes, including differences in chromatin accessibility, DNA methylation and histone modification. Epigenetic marks in USCs from chronically infected mice enhanced caspase-1-mediated cell death upon UPEC infection, promoting bacterial clearance. Increased Ptgs2os2 expression also occurred, potentially contributing to sustained cyclooxygenase-2 expression, bladder inflammation and mucosal wounding-responses associated with severe recurrent cystitis. Thus, UPEC infection acts as an epi-mutagen reprogramming the urothelial epigenome, leading to urothelial-intrinsic remodelling and training of the innate response to subsequent infection

    Search for pair production of excited top quarks in the lepton+jets final state

    Get PDF
    corecore