14 research outputs found

    The study of molecular variation in Atlantic salmon (Salmo salar L.) and brown trout (Salmo trutta L.)

    Get PDF
    Polymorphic microsatellite DNA loci were used here in three studies, one on Salmo salar and two on S. trutta. In the case of S. salar, the survival of native fish and non-natives from a nearby catchment, and their hybrids, were compared in a freshwater common garden experiment and subsequently in ocean ranching, with parental assignment utilising microsatellites. Overall survival of non-natives was 35% of natives. This differential survival was mainly in the oceanic phase. These results imply a genetic basis and suggest local adaptation can occur in salmonids across relatively small geographic distances which may have important implications for the management of salmon populations. In the first case study with S trutta, the species was investigated throughout its spread as an invasive in Newfoundland, eastern Canada. Genetic investigation confirmed historical records that the majority of introductions were from a Scottish hatchery and provided a clear example of the structure of two expanding waves of spread along coasts, probably by natural straying of anadromous individuals, to the north and south of the point of human introduction. This study showed a clearer example of the genetic anatomy of an invasion than in previous studies with brown trout, and may have implications for the management of invasive species in general. Finally, the genetics of anadromous S. trutta from the Waterville catchment in south western Ireland were studied. Two significantly different population groupings, from tributaries in geographically distinct locations entering the largest lake in the catchment, were identified. These results were then used to assign very large rod caught sea trout individuals (so called “specimen” sea trout) back to region of origin, in a Genetic Stock Identification exercise. This suggested that the majority of these large sea trout originated from one of the two tributary groups. These results are relevant for the understanding of sea trout population dynamics and for the future management of this and other sea trout producing catchments. This thesis has demonstrated new insights into the population structuring of salmonids both between and within catchments. While these chapters look at the existence and scale of genetic variation from different angles, it might be concluded that the overarching message from this thesis should be to highlight the importance of maintaining genetic diversity in salmonid populations as vital for their long-term productivity and resilience

    The signature of fine scale local adaptation in Atlantic salmon revealed from common garden experiments in nature

    Get PDF
    Understanding the extent, scale and genetic basis of local adaptation (LA) is important for conservation and management. Its relevance in salmonids at microgeographic scales, where dispersal (and hence potential gene flow) can be substantial, has however been questioned. Here, we compare the fitness of communally reared offspring of local and foreign Atlantic salmon Salmo salar from adjacent Irish rivers and reciprocal F-1 hybrid crosses between them, in the wild home\u27 environment of the local population. Experimental groups did not differ in wild smolt output but a catastrophic flood event may have limited our ability to detect freshwater performance differences, which were evident in a previous study. Foreign parr exhibited higher, and hybrids intermediate, emigration rates from the natal stream relative to local parr, consistent with genetically based behavioural differences. Adult return rates were lower for the foreign compared to the local group. Overall lifetime success of foreigners and hybrids relative to locals was estimated at 31% and 40% (mean of both hybrid groups), respectively. The results imply a genetic basis to fitness differences among populations separated by only 50km, driven largely by variation in smolt to adult return rates. Hence even if supplementary stocking programs obtain broodstock from neighbouring rivers, the risk of extrinsic outbreeding depression may be high

    The signature of fine scale local adaptation in Atlantic salmon revealed from common garden experiments in nature

    Get PDF
    Understanding the extent, scale and genetic basis of local adaptation (LA) is important for conservation and management. Its relevance in salmonids at microgeographic scales, where dispersal (and hence potential gene flow) can be substantial, has however been questioned. Here, we compare the fitness of communally reared offspring of local and foreign Atlantic salmon Salmo salar from adjacent Irish rivers and reciprocal F-1 hybrid crosses between them, in the wild home' environment of the local population. Experimental groups did not differ in wild smolt output but a catastrophic flood event may have limited our ability to detect freshwater performance differences, which were evident in a previous study. Foreign parr exhibited higher, and hybrids intermediate, emigration rates from the natal stream relative to local parr, consistent with genetically based behavioural differences. Adult return rates were lower for the foreign compared to the local group. Overall lifetime success of foreigners and hybrids relative to locals was estimated at 31% and 40% (mean of both hybrid groups), respectively. The results imply a genetic basis to fitness differences among populations separated by only 50km, driven largely by variation in smolt to adult return rates. Hence even if supplementary stocking programs obtain broodstock from neighbouring rivers, the risk of extrinsic outbreeding depression may be high

    Varying disease-mediated selection at different life-history stages of Atlantic salmon in fresh water

    Get PDF
    Laboratory studies on associations between disease resistance and susceptibility and major histocompatibility (MH) genes in Atlantic salmon Salmo salar have shown the importance of immunogenetics in understanding the capacity of populations to fight specific diseases. However, the occurrence and virulence of pathogens may vary spatially and temporally in the wild, making it more complicated to predict the overall effect that MH genes exert on fitness of natural populations and over several life-history stages. Here we show that MH variability is a significant determinant of salmon survival in fresh water, by comparing observed and expected genotype frequencies at MH and control microsatellite loci at parr and migrant stages in the wild. We found that additive allelic effects at immunogenetic loci were more likely to determine survival than dominance deviation, and that selection on certain MH alleles varied with life stage, possibly owing to varying pathogen prevalence and/or virulence over time. Our results highlight the importance of preserving genetic diversity (particularly at MH loci) in wild populations, so that they have the best chance of adapting to new and increased disease challenges as a result of projected climate warming and increasing aquaculture

    RESCALE: Review and Simulate Climate and Catchment Responses at Burrishoole - Project-Based Award, Final Summary Report

    Get PDF
    Sea Change—A Marine Knowledge, Research & Innovation Strategy for Ireland 2007-2013—was launched in early 2007 and was the outcome of extensive analysis and consultation with government departments, state agencies, industry and the third-level sector. It outlines a vision for the development of Ireland’s marine sector and sets clear objectives aimed at achieving this vision, namely to: 1. Assist existing, and largely indigenous, marine sub-sectors to improve their overall competitiveness and engage in activity that adds value to their outputs by utilising knowledge and technology arising from research. 2. Build new research capacity and capability and utilise fundamental knowledge and technology to create new marine-related commercial opportunities and companies. 3. Inform public policy, governance and regulation by applying the knowledge derived from marine research and monitoring. 4. Increase the marine sector’s competitiveness and stimulate the commercialisation of the marine resource in a manner that ensures its sustainability and protects marine biodiversity and ecosystems. 5. Strengthen the economic, social and cultural base of marine dependant regional/rural communities. The Sea Change strategy was developed as an integral part of the government’s Strategy for Science, Technology and Innovation (SSTI) and the Marine Institute as the lead implementation agency is working within SSTI policy and with government departments and agencies to deliver on the Strategy. The Marine Institute managed Marine Research Sub-Programme, one of eight sub-programmes within the Science, Technology and Innovation (STI) Programme of the National Development Plan 2007—2013, targets funding to meet the objectives of the Sea Change strateg

    RESCALE: Review and Simulate Climate and Catchment Responses at Burrishoole - Project-Based Award, Final Summary Report

    No full text
    Sea Change—A Marine Knowledge, Research & Innovation Strategy for Ireland 2007-2013—was launched in early 2007 and was the outcome of extensive analysis and consultation with government departments, state agencies, industry and the third-level sector. It outlines a vision for the development of Ireland’s marine sector and sets clear objectives aimed at achieving this vision, namely to: 1. Assist existing, and largely indigenous, marine sub-sectors to improve their overall competitiveness and engage in activity that adds value to their outputs by utilising knowledge and technology arising from research. 2. Build new research capacity and capability and utilise fundamental knowledge and technology to create new marine-related commercial opportunities and companies. 3. Inform public policy, governance and regulation by applying the knowledge derived from marine research and monitoring. 4. Increase the marine sector’s competitiveness and stimulate the commercialisation of the marine resource in a manner that ensures its sustainability and protects marine biodiversity and ecosystems. 5. Strengthen the economic, social and cultural base of marine dependant regional/rural communities. The Sea Change strategy was developed as an integral part of the government’s Strategy for Science, Technology and Innovation (SSTI) and the Marine Institute as the lead implementation agency is working within SSTI policy and with government departments and agencies to deliver on the Strategy. The Marine Institute managed Marine Research Sub-Programme, one of eight sub-programmes within the Science, Technology and Innovation (STI) Programme of the National Development Plan 2007—2013, targets funding to meet the objectives of the Sea Change strateg
    corecore