4,457 research outputs found

    On the Anomalous Temperature Distribution of the Intergalactic Medium in the NGC 3411 Group of Galaxies

    Full text link
    We present XMM, Chandra and VLA observations of the USGC S152 group and its central elliptical NGC 3411. Imaging of the group X-ray halo suggests it is relaxed with little apparent structure. We investigate the temperature and metal abundance structure of the group halo, and find that while the abundance distribution is fairly typical, the temperature profile is highly unusual, showing a hot inner core surrounded by a cool shell of gas with a radius of \~20-40 kpc, at the center of the larger group halo. Spectral mapping confirms an irregular ring of gas ~0.15 keV cooler than its surroundings. We estimate the total mass, entropy and cooling time profiles within ~200 kpc, and find that the cool shell contains ~9x10^9 Msun of gas. VLA observations at 1.4, 5 and 8 GHz reveal a relatively weak nuclear radio source, with a core radio luminosity L_R=2.7x10^38 erg/s, and a diffuse component extended on scales of a few arcseconds (or more). A lack of evidence for activity at optical or X-ray wavelengths supports the conclusion that the central black hole is currently in a quiescent state. We discuss possible mechanisms for the formation of temperature features observed in the halo, including a previous period of AGN activity, and settling of material stripped from the halo of one of the other group member galaxies.Comment: 15 pages, 8 postscript figures, accepted for publication in ApJ version with high resolution figures available at http://hea-www.harvard.edu/~ejos/files/N3411_hires.pd

    Formaldehyde over the central Pacific during PEM-Tropics B

    Get PDF
    Formaldehyde, CH2O, mixing ratios are reported for the central Pacific troposphere from a series of 41 flights, which took place in March-April 1999 as part of the NASA Pacific Exploratory Mission (PEM) -Tropics B mission. Ambient CH2O was collected in aqueous media and quantified using an enzyme-derivatization fluorescence technique. Primary calibration was performed using aqueous standards and known flow rates. Occasionally, CH2O gas standard additions to ambient air were performed as a secondary calibration. Analytical blanks were determined by replacing ambient air with pure air. The estimated precision was ±30 pptv and the estimated accuracy was the sum of ±30 parts per trillion by volume (pptv) ±15% of the measured value. Approximately 25% of the observations were less than the instrumental detection limit of 50 pptv, and 85% of these occurred above 6 km. CH2O mixing ratios decreased with altitude; for example, near the equator the median value in the lowest 2 km was 275 pptv, decreased to 150 pptv by 6 km and was below 100 pptv above 8 km. Between 130 and 170 W and below 1km, a small variation of CH2O mixing ratio with latitude was noted as near-surface median mixing ratios decreased near the equator (275 pptv) and were greater on either side (375 pptv). A marked decrease in near-surface CH2O (200 pptv) was noted south of 23° S on two flights. Between 3° and 23° S, median CH2O mixing ratios were lower in the eastern tropical Pacific than in the western or central Pacific; nominal differences were >100 pptv near the surface to ∼100 pptv at midaltitude to ∼50 pptv at high altitude. Off the coast of Central America and Mexico, mixing ratios as high as 1200 pptv were observed in plumes that originated to the east over land. CH2O observations were consistently higher than the results from a point model constrained by other photochemical species and meteorological parameters. Regardless of latitude or longitude, agreement was best at altitudes above 4 km where the difference between measured and modeled CH2O medians was less than 50 pptv. Below 2 km the model median was approximately 150 pptv less than the measured median. Copyright 2001 by the American Geophysical Union

    From neurons to epidemics: How trophic coherence affects spreading processes

    Get PDF
    Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feed-back cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here we consider two simple yet apparently quite different dynamical models -- one a Susceptible-Infected-Susceptible (SIS) epidemic model adapted to include complex contagion, the other an Amari-Hopfield neural network -- and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes

    Sequencing-Based Analysis of the Bacterial and Fungal Composition of Kefir Grains and Milks from Multiple Sources

    Get PDF
    peer-reviewedKefir is a fermented milk-based beverage to which a number of health-promoting properties have been attributed. The microbes responsible for the fermentation of milk to produce kefir consist of a complex association of bacteria and yeasts, bound within a polysaccharide matrix, known as the kefir grain. The consistency of this microbial population, and that present in the resultant beverage, has been the subject of a number of previous, almost exclusively culture-based, studies which have indicated differences depending on geographical location and culture conditions. However, culture-based identification studies are limited by virtue of only detecting species with the ability to grow on the specific medium used and thus culture-independent, molecular-based techniques offer the potential for a more comprehensive analysis of such communities. Here we describe a detailed investigation of the microbial population, both bacterial and fungal, of kefir, using high-throughput sequencing to analyse 25 kefir milks and associated grains sourced from 8 geographically distinct regions. This is the first occasion that this technology has been employed to investigate the fungal component of these populations or to reveal the microbial composition of such an extensive number of kefir grains or milks. As a result several genera and species not previously identified in kefir were revealed. Our analysis shows that the bacterial populations in kefir are dominated by 2 phyla, the Firmicutes and the Proteobacteria. It was also established that the fungal populations of kefir were dominated by the genera Kazachstania, Kluyveromyces and Naumovozyma, but that a variable sub-dominant population also exists.The Alimentary Pharmabiotic Centre is a research centre funded by Science Foundation Ireland (SFI), through the Irish Government’s National Development Plan. The authors and their work were supported by SFI CSET grant APC CSET 2 grant 07/CE/B1368

    The X-ray Emission in Post-Merger Ellipticals

    Get PDF
    The evolution in X-ray properties of early-type galaxies is largely unconstrained. In particular, little is known about how, and if, remnants of mergers generate hot gas halos. Here we examine the relationship between X-ray luminosity and galaxy age for a sample of early-type galaxies. Comparing normalized X-ray luminosity to three different age indicators we find that L_X/L_B increases with age, suggesting an increase in X-ray halo mass with time after a galaxy's last major star-formation episode. The long-term nature of this trend, which appears to continue across the full age range of our sample, poses a challenge for many models of hot halo formation. We conclude that models involving a declining rate of type Ia supernovae, and a transition from outflow to inflow of the gas originally lost by galactic stars, offers the most promising explanation for the observed evolution in X-ray luminosity

    Gold nanoparticles as novel agents for cancer therapy

    Get PDF
    Gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated as drug carriers, photothermal agents, contrast agents and radiosensitisers. This review introduces the field of nanotechnology with a focus on recent gold nanoparticle research which has led to early-phase clinical trials. In particular, the pre-clinical evidence for gold nanoparticles as sensitisers with ionising radiation in vitro and in vivo at kilovoltage and megavoltage energies is discussed
    • …
    corecore