260 research outputs found

    The Tyrosine Kinase Inhibitor Dasatinib Induces a Marked Adipogenic Differentiation of Human Multipotent Mesenchymal Stromal Cells

    Get PDF
    BACKGROUND: The introduction of specific BCR-ABL inhibitors in chronic myelogenous leukemia therapy has entirely mutated the prognosis of this hematologic cancer from being a fatal disorder to becoming a chronic disease. Due to the probable long lasting treatment with tyrosine-kinase inhibitors (TKIs), the knowledge of their effects on normal cells is of pivotal importance. DESIGN AND METHODS: We investigated the effects of dasatinib treatment on human bone marrow-derived mesenchymal stromal cells (MSCs). RESULTS: Our findings demonstrate, for the first time, that dasatinib induces MSCs adipocytic differentiation. Particularly, when the TKI is added to the medium inducing osteogenic differentiation, a high MSCs percentage acquires adipocytic morphology and overexpresses adipocytic specific genes, including PPARγ, CEBPα, LPL and SREBP1c. Dasatinib also inhibits the activity of alkaline phosphatase, an osteogenic marker, and remarkably reduces matrix mineralization. The increase of PPARγ is also confirmed at protein level. The component of osteogenic medium required for dasatinib-induced adipogenesis is dexamethasone. Intriguingly, the increase of adipocytic markers is also observed in MSCs treated with dasatinib alone. The TKI effect is phenotype-specific, since fibroblasts do not undergo adipocytic differentiation or PPARγ increase. CONCLUSIONS: Our data demonstrate that dasatinib treatment affects bone marrow MSCs commitment and suggest that TKIs therapy might modify normal phenotypes with potential significant negative consequences

    Chromothripsis orchestrates leukemic transformation in blast phase MPN through targetable amplification of DYRK1A

    Get PDF
    Chromothripsis, the process of catastrophic shattering and haphazard repair of chromosomes, is a common event in cancer. Whether chromothripsis might constitute an actionable molecular event amenable to therapeutic targeting remains an open question. We describe recurrent chromothripsis of chromosome 21 in a subset of patients in blast phase of a myeloproliferative neoplasm (BP-MPN), which alongside other structural variants leads to amplification of a region of chromosome 21 in ∼25% of patients (‘chr21amp’). We report that chr21amp BP-MPN has a particularly aggressive and treatment-resistant phenotype. The chr21amp event is highly clonal and present throughout the hematopoietic hierarchy. DYRK1A, a serine threonine kinase and transcription factor, is the only gene in the 2.7Mb minimally amplified region which showed both increased expression and chromatin accessibility compared to non-chr21amp BP-MPN controls. We demonstrate that DYRK1A is a central node at the nexus of multiple cellular functions critical for BP-MPN development, including DNA repair, STAT signalling and BCL2 overexpression. DYRK1A is essential for BP-MPN cell proliferation in vitro and in vivo, and DYRK1A inhibition synergises with BCL2 targeting to induce BP-MPN cell apoptosis. Collectively, these findings define the chr21amp event as a prognostic biomarker in BP-MPN and link chromothripsis to a druggable target

    Robot-assisted surgery for the management of apical prolapse: a bicentre prospective cohort study

    Get PDF
    Objective: Robot‐assisted surgery is a recognized treatment for pelvic‐organ prolapse. Many of the surgical subgroup outcomes for apical prolapse are reported together leading to a paucity of homogenous data. Design: Prospective observational cohort study (https://clinicaltrials.gov; identifier NCT01598467) assessing outcomes for homogeneous subgroups of robot‐assisted apical prolapse surgery. Setting: Two European tertiary referral hospitals. Population: Consecutive patients undergoing robot‐assisted sacrocolpopexy (RASC) and supracervical hysterectomy with sacrocervicopexy (RSHS). Methods: Anatomical cure (simplified Pelvic Organ Prolapse Quantification (sPOPQ) stage 1,), subjective cure (symptoms of bulge) and quality of life (Pelvic Floor Impact Questionnaire [PFIQ‐7]). Main Outcome measures: Primary outcome: anatomical and subjective cure. Secondary outcomes: surgical safety and intraoperative variables. Results: Total 305 patients included (RASC N=188, RSHS N=117). Twelve months follow‐up available for 144 (RASC 76.6%) and 109 (RSHS 93.2%). Anatomical success of the apical compartment occurred in 91% (RASC) and in 99% (RSHS). In all compartments, success percentages were 67% and 65% respectively. Most recurrences were anterior compartment (15.7% RASC [symptomatic 12.1%]; 22.9% RSHS [symptomatic 4.8%]). Symptoms of bulge improved from 97.4% to 17.4% (p<0.0005). PFIQ‐7 scores improved from 76.7 ± 62.3 to 13.5 ± 31.1 (p<0.0005). Duration of surgery increased significantly in RSHS (183.1 ± 38.2 versus 145.3 ± 29.8 [p<0.0005]). Intraoperative complications and conversion rates were low (RASC: 5.3% and 4.3%; RSHS: 0.0% and 0.0%). Four severe postoperative complications occurred after RASC (2.1%) and one after RSHS (1.6%). Conclusion: This is the largest reported prospective cohort study on robot‐assisted apical prolapse surgery. Both procedures are safe, with durable results

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Accessible High-Throughput Virtual Screening Molecular Docking Software for Students and Educators

    Get PDF
    We survey low cost high-throughput virtual screening (HTVS) computer programs for instructors who wish to demonstrate molecular docking in their courses. Since HTVS programs are a useful adjunct to the time consuming and expensive wet bench experiments necessary to discover new drug therapies, the topic of molecular docking is core to the instruction of biochemistry and molecular biology. The availability of HTVS programs coupled with decreasing costs and advances in computer hardware have made computational approaches to drug discovery possible at institutional and non-profit budgets. This paper focuses on HTVS programs with graphical user interfaces (GUIs) that use either DOCK or AutoDock for the prediction of DockoMatic, PyRx, DockingServer, and MOLA since their utility has been proven by the research community, they are free or affordable, and the programs operate on a range of computer platforms

    Effects of Dopamine on Sensitivity to Social Bias in Parkinson's Disease

    Get PDF
    Patients with Parkinson's disease (PD) sometimes develop impulsive compulsive behaviours (ICBs) due to their dopaminergic medication. We compared 26 impulsive and 27 non-impulsive patients with PD, both on and off medication, on a task that examined emotion bias in decision making. No group differences were detected, but patients on medication were less biased by emotions than patients off medication and the strongest effects were seen in patients with ICBs. PD patients with ICBs on medication also showed more learning from negative feedback and less from positive feedback, whereas off medication they showed the opposite effect

    Cytoplasmic Polyadenylation Element Binding Protein Deficiency Stimulates PTEN and Stat3 mRNA Translation and Induces Hepatic Insulin Resistance

    Get PDF
    The cytoplasmic polyadenylation element binding protein CPEB1 (CPEB) regulates germ cell development, synaptic plasticity, and cellular senescence. A microarray analysis of mRNAs regulated by CPEB unexpectedly showed that several encoded proteins are involved in insulin signaling. An investigation of Cpeb1 knockout mice revealed that the expression of two particular negative regulators of insulin action, PTEN and Stat3, were aberrantly increased. Insulin signaling to Akt was attenuated in livers of CPEB–deficient mice, suggesting that they might be defective in regulating glucose homeostasis. Indeed, when the Cpeb1 knockout mice were fed a high-fat diet, their livers became insulin-resistant. Analysis of HepG2 cells, a human liver cell line, depleted of CPEB demonstrated that this protein directly regulates the translation of PTEN and Stat3 mRNAs. Our results show that CPEB regulated translation is a key process involved in insulin signaling

    Host Specific Diversity in Lactobacillus johnsonii as Evidenced by a Major Chromosomal Inversion and Phage Resistance Mechanisms

    Get PDF
    Genetic diversity and genomic rearrangements are a driving force in bacterial evolution and niche adaptation. We sequenced and annotated the genome of Lactobacillus johnsonii DPC6026, a strain isolated from the porcine intestinal tract. Although the genome of DPC6026 is similar in size (1.97mbp) and GC content (34.8%) to the sequenced human isolate L. johnsonii NCC 533, a large symmetrical inversion of approximately 750 kb differentiated the two strains. Comparative analysis among 12 other strains of L. johnsonii including 8 porcine, 3 human and 1 poultry isolate indicated that the genome architecture found in DPC6026 is more common within the species than that of NCC 533. Furthermore a number of unique features were annotated in DPC6026, some of which are likely to have been acquired by horizontal gene transfer (HGT) and contribute to protection against phage infection. A putative type III restriction-modification system was identified, as were novel Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) elements. Interestingly, these particular elements are not widely distributed among L. johnsonii strains. Taken together these data suggest intra-species genomic rearrangements and significant genetic diversity within the L. johnsonii species and indicate towards a host-specific divergence of L. johnsonii strains with respect to genome inversion and phage exposure
    corecore