5,142 research outputs found
The mystery of the 'Kite' radio source in Abell 2626: insights from new Chandra observations
We present the results of a new Chandra study of the galaxy cluster A2626.
The radio emission of the cluster shows a complex system of four symmetric arcs
without known correlations with the X-ray emission. The mirror symmetry of the
radio arcs toward the center and the presence of two optical cores in the
central galaxy suggested that they may be created by pairs of precessing radio
jets powered by dual AGNs inside the cD galaxy. However, previous observations
failed to observe the second jetted AGN and the spectral trend due to radiative
age along the radio arcs, thus challenging this interpretation. The new Chandra
observation had several scientific objectives, including the search for the
second AGN that would support the jet precession model. We focus here on the
detailed study of the local properties of the thermal and non-thermal emission
in the proximity of the radio arcs, in order to get more insights into their
origin. We performed a standard data reduction of the Chandra dataset deriving
the radial profiles of temperature, density, pressure and cooling time of the
intra-cluster medium. We further analyzed the 2D distribution of the gas
temperature, discovering that the south-western junction of the radio arcs
surrounds the cool core of the cluster. We studied the X-ray SB and spectral
profiles across the junction, finding a cold front spatially coincident with
the radio arcs. This may suggest a connection between the sloshing of the
thermal gas and the nature of the radio filaments, raising new scenarios for
their origin. A possibility is that the radio arcs trace the projection of a
complex surface connecting the sites where electrons are most efficiently
reaccelerated by the turbulence that is generated by the gas sloshing. In this
case, diffuse emission embedded by the arcs and with extremely steep spectrum
should be most visible at very low radio frequencies.Comment: 7 pages, 7 figures. Accepted for publication on A&
European coastal state competitive marine research funding programmes: The MarinERA Reference Manual (2008): A description of European marine research funding programmes and implementation procedures
Gold nanoparticles as novel agents for cancer therapy
Gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated as drug carriers, photothermal agents, contrast agents and radiosensitisers. This review introduces the field of nanotechnology with a focus on recent gold nanoparticle research which has led to early-phase clinical trials. In particular, the pre-clinical evidence for gold nanoparticles as sensitisers with ionising radiation in vitro and in vivo at kilovoltage and megavoltage energies is discussed
Deep Chandra Observations of HCG 16 - I. Active Nuclei, Star formation and Galactic Winds
We present new, deep Chandra X-ray and Giant Metrewave Radio Telescope
610~MHz observations of the spiral-galaxy-rich compact group HCG 16, which we
use to examine nuclear activity, star formation and the high luminosity X-ray
binary populations in the major galaxies. We confirm the presence of obscured
active nuclei in NGC 833 and NGC 835, and identify a previously unrecognized
nuclear source in NGC 838. All three nuclei are variable on timescales of
months to years, and for NGC 833 and NGC 835 this is most likely caused by
changes in accretion rate. The deep Chandra observations allow us to detect for
the first time an Fe-K emission line in the spectrum of the Seyfert 2
nucleus of NGC 835. We find that NGC 838 and NGC 839 are both
starburst-dominated systems, with only weak nuclear activity, in agreement with
previous optical studies. We estimate the star formation rates in the two
galaxies from their X-ray and radio emission, and compare these results with
estimates from the infra-red and ultra-violet bands to confirm that star
formation in both galaxies is probably declining after galaxy-wide starbursts
were triggered ~400-500 Myr ago. We examine the physical properties of their
galactic superwinds, and find that both have temperatures of ~0.8 keV. We also
examine the X-ray and radio properties of NGC 848, the fifth largest galaxy in
the group, and show that it is dominated by emission from its starburst.Comment: 18 pages, 11 figures, 11 tables, accepted for publication in ApJ;
updated references and fixed typos identified at proof stag
Detection of Cosmic Microwave Background Structure in a Second Field with the Cosmic Anisotropy Telescope
We describe observations at frequencies near 15 GHz of the second 2x2 degree
field imaged with the Cambridge Cosmic Anisotropy Telescope (CAT). After the
removal of discrete radio sources, structure is detected in the images on
characteristic scales of about half a degree, corresponding to spherical
harmonic multipoles in the approximate range l= 330--680. A Bayesian analysis
confirms that the signal arises predominantly from the cosmic microwave
background (CMB) radiation for multipoles in the lower half of this range; the
average broad-band power in a bin with centroid l=422 (theta = 51') is
estimated to be Delta_T/T=2.1^{+0.4}_{-0.5} x 10^{-5}. For multipoles centred
on l=615 (theta =35'), we find contamination from Galactic emission is
significant, and constrain the CMB contribution to the measured power in this
bin to be Delta_T/T <2.0 x 10^{-5} (1-sigma upper limit). These new results are
consistent with the first detection made by CAT in a completely different area
of sky. Together with data from other experiments, this new CAT detection adds
weight to earlier evidence from CAT for a downturn in the CMB power spectrum on
scales smaller than 1 degree. Improved limits on the values of H_0 and Omega
are determined using the new CAT data.Comment: 5 pages, 5 figures (gif), submitted to MNRA
Untangling cosmic magnetic fields: Faraday tomography at metre wavelengths with LOFAR
14 pages, 6 figures. Accepted for publication in "The Power of Faraday Tomography" special issue of GalaxiesThe technique of Faraday tomography is a key tool for the study ofmagnetised plasmas in the new era of broadband radio-polarisation observations. In particular, observations at metre wavelengths provide significantly better Faraday depth accuracies compared to traditional centimetre-wavelength observations. However, the effect of Faraday depolarisationmakes the polarised signal very challenging to detect at metre wavelengths (MHz frequencies). In this work, Faraday tomography is used to characterise the Faraday rotation properties of polarised sources found in data from the LOFAR Two-Metre Sky Survey (LoTSS). Of the 76 extragalactic polarised sources analysed here, we find that all host a radio-loud AGN (Active Galactic Nucleus). The majority of the sources (~64%) are large FRII radio galaxies with a median projected linear size of 710 kpc and median radio luminosity at 144 MHz of 4 × 10 26 W Hz -1 (with ~13% of all sources having a linear size > 1 Mpc). In several cases, both hotspots are detected in polarisation at an angular resolution of ~20'. One such case allowed a study of intergalactic magnetic fields on scales of 3.4 Mpc. Other detected source types include an FRI radio galaxy and at least eight blazars. Most sources display simple Faraday spectra, but we highlight one blazar that displays a complex Faraday spectrum, with two close peaks in the Faraday dispersion function.Peer reviewe
Canine dystocia in 50 UK first-opinion emergency-care veterinary practices: prevalence and risk factors
Dystocia can represent a major welfare issue for dogs of certain breeds and morphologies. First-opinion emergency-care veterinary caseloads represent a useful data resource for epidemiological research because dystocia can often result in emergency veterinary care. The study analysed a merged database of clinical records from 50 first-opinion emergency-care veterinary practices participating in the VetCompass Programme. Multivariable logistic regression modelling was used for risk factors analysis. There were 701 dystocia cases recorded among 18,758 entire female dogs, resulting in a dystocia prevalence of 3.7 per cent (95 per cent CI 3.5–4.0 per cent). Breeds with the highest odds of dystocia compared with crossbred bitches were French Bulldog (OR: 15.9, 95 per cent CI 9.3 to 27.2, P<0.001), Boston Terrier (OR: 12.9, 95 per cent CI 5.6 to 29.3, P<0.001), Chihuahua (OR: 10.4, 95 per cent CI 7.0 to 15.7, P<0.001) and Pug (OR: 11.3, 95 per cent CI 7.1 to 17.9, P<0.001). Bitches aged between 3.0 and 5.9 years had 3.1 (95 per cent CI 2.6 to 3.7, P<0.001) times the odds of dystocia compared with bitches aged under 3.0years. Certain breeds, including some brachycephalic and toy breeds, appeared at high risk of dystocia. Opportunities to improve this situation are discussed
- …
